cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A094015 Expansion of (1+4*x)/(1-8*x^2).

Original entry on oeis.org

1, 4, 8, 32, 64, 256, 512, 2048, 4096, 16384, 32768, 131072, 262144, 1048576, 2097152, 8388608, 16777216, 67108864, 134217728, 536870912, 1073741824, 4294967296, 8589934592, 34359738368, 68719476736, 274877906944
Offset: 0

Views

Author

Paul Barry, Apr 21 2004

Keywords

Comments

Row sums of triangle A135838. - Gary W. Adamson, Dec 01 2007
Row sums of triangle A152842. - Reinhard Zumkeller, May 01 2014

Crossrefs

Programs

  • Haskell
    a094015 = sum . a152842_row  -- Reinhard Zumkeller, May 01 2014
    
  • Magma
    [2*8^Floor((n-1)/2)*(3+(-1)^n): n in [0..30]]; // G. C. Greubel, Nov 22 2021
    
  • Maple
    a:=n->mul(3-(-1)^j,j=1..n):seq(a(n),n=0..25); # Zerinvary Lajos, Dec 13 2008
  • Mathematica
    Table[8^Floor[n/2]*Mod[4^n, 5], {n, 0, 30}] (* G. C. Greubel, Nov 22 2021 *)
  • Sage
    [8^(n//2)*(4^n%5) for n in (0..30)] # G. C. Greubel, Nov 22 2021

Formula

a(n) = 2^(3*n/2)*(1 + sqrt(2) + (-1)^n*(1 - sqrt(2)))/2.
a(n) = (1/4)*(3 + (-1)^n)*8^floor((n+1)/2). - Paul Barry, Jul 14 2004
a(n) = (1 + sqrt(2))*(2*sqrt(2))^n/2 + (1 - sqrt(2))*(-2*sqrt(2))^n/2. Third binomial transform is A002315 (NSW numbers). - Paul Barry, Jul 17 2004
a(n) = 2^A007494(n). - Paul Barry, Aug 18 2007
a(n) = A016116(n+1)*A000079(n). - R. J. Mathar, Jul 08 2009
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = 8^floor(n/2)*A010685(n). - G. C. Greubel, Nov 22 2021

A113836 a(n) = Sum[2^(A001651(i-1)-1), {i,1,n}].

Original entry on oeis.org

1, 3, 11, 27, 91, 219, 731, 1755, 5851, 14043, 46811, 112347, 374491, 898779, 2995931, 7190235, 23967451, 57521883, 191739611, 460175067, 1533916891, 3681400539, 12271335131, 29451204315, 98170681051, 235609634523
Offset: 1

Views

Author

Artur Jasinski, Jan 27 2006

Keywords

Comments

From Reinhard Zumkeller, Feb 22 2010: (Start)
For n>1: a(n)=A173593(3*n-5): terms of A173593 ending with digits '11' in binary representation;
for n>0: a(n)=A033129(3*n-1); a(n+1)-a(n)=ABS(A094014(n)). (End)

Examples

			a(2) = 2^(A001651(0)-1) + 2^(A001651(1)-1) = 2^0 + 2^1 = 3
		

Crossrefs

Cf. A001651.

Programs

  • Mathematica
    a = {}; s = 0; For[n = 1, n < 40, n++, If[Length[Intersection[{Mod[n, 3]}, {1,2}]] > 0, s = s + 2^(n - 1); AppendTo[a, s]]]; a

Formula

Empirical g.f.: x*(2*x+1) / ((x-1)*(8*x^2-1)). - Colin Barker, Sep 01 2013

Extensions

Edited by Stefan Steinerberger, Jul 23 2007

A135536 a(n) = 8*a(n-2), with a(0) = 7, a(1) = 14.

Original entry on oeis.org

7, 14, 56, 112, 448, 896, 3584, 7168, 28672, 57344, 229376, 458752, 1835008, 3670016, 14680064, 29360128, 117440512, 234881024, 939524096, 1879048192, 7516192768, 15032385536, 60129542144, 120259084288, 481036337152
Offset: 0

Views

Author

Paul Curtz, Feb 22 2008

Keywords

Programs

  • Mathematica
    Table[(7/4)*( (2 + Sqrt[2]) + (-1)^n*(2 - Sqrt[2]) )*(Sqrt[2])^(3*n), {n,0,25}] (* or *) LinearRecurrence[{0,8},{7,14}, 25] (* G. C. Greubel, Oct 18 2016 *)
  • PARI
    a(n)=([0,1; 8,0]^n*[7;14])[1,1] \\ Charles R Greathouse IV, Oct 18 2016

Formula

a(n) = b(3*n) + b(3*n + 1) + b(3*n + 2), where b(n) = A135530(n) [previous name].
a(n) = 7 * abs(A094014(n)).
O.g.f.: 7*(1 + 2*x)/(1 - 8*x^2). - R. J. Mathar, Feb 23 2008
From G. C. Greubel, Oct 18 2016: (Start)
a(n) = (7/4)*( (2 + sqrt(2)) + (-1)^n*(2 - sqrt(2)) )*(sqrt(2))^(3*n).
a(n) = 8*a(n-2).
E.g.f.: (7/2)*( 2*cosh(2*sqrt(2)*x) + sqrt(2)*sinh(2*sqrt(2)*x) ). (End)

Extensions

More terms from R. J. Mathar, Feb 23 2008
New name from G. C. Greubel, Oct 18 2016

A235202 Numbers written in an alternating binary-then-quaternary base.

Original entry on oeis.org

1, 10, 11, 20, 21, 30, 31, 100, 101, 110, 111, 120, 121, 130, 131, 1000, 1001, 1010, 1011, 1020, 1021, 1030, 1031, 1100, 1101, 1110, 1111, 1120, 1121, 1130, 1131, 2000, 2001, 2010, 2011, 2020, 2021, 2030, 2031, 2100
Offset: 1

Views

Author

Jeremy Gardiner, Jan 04 2014

Keywords

Comments

Mixed-radix number representation produced by a serial counter with generating sequence (1, 3, 1, 3, ...) = A010684.
Places reading from the right have values (1, 2, 8, 16, 64, 128, ...) = unsigned A094014.
Conjecture: This sequence interpreted as quaternary (base 4) numbers gives A126001 (hence a simplified scheme for computing that sequence).

Examples

			a(15) = 131 since 15 = 1*1+3*2+1*8.
		

Crossrefs

Cf. A109827 (Numbers written in an alternating binary-then-ternary base).

A368043 Triangle read by rows: T(n, k) = 2^(n + k).

Original entry on oeis.org

1, 2, 4, 4, 8, 16, 8, 16, 32, 64, 16, 32, 64, 128, 256, 32, 64, 128, 256, 512, 1024, 64, 128, 256, 512, 1024, 2048, 4096, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144
Offset: 0

Views

Author

Peter Luschny, Dec 09 2023

Keywords

Examples

			[0]  [  1]
[1]  [  2,   4]
[2]  [  4,   8,  16]
[3]  [  8,  16,  32,    64]
[4]  [ 16,  32,  64,   128,  256]
[5]  [ 32,  64,  128,  256,  512, 1024]
[6]  [ 64, 128,  256,  512, 1024, 2048,  4096]
[7]  [128, 256,  512, 1024, 2048, 4096,  8192, 16384]
[8]  [256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536]
		

Crossrefs

Cf. A000079 (T(n,0)), A004171 (T(n,n-1)), A000302 (T(n,n)), A171476 (row sums), A003683 (alternating row sums), A134353 (antidiagonal sums), A001018 (T(2n, n)), A094014 (T(n, n/2)), A002697.

Programs

  • Mathematica
    Array[2^Range[#,2#]&,10,0] (* Paolo Xausa, Dec 09 2023 *)
  • Python
    from functools import cache
    @cache
    def T_row(n: int) -> list[int]:
        if n == 0: return [1]
        row = T_row(n - 1) + [0]
        for k in range(n): row[k] *= 2
        row[n] = row[n - 1] * 2
        return row
    for n in range(11): print(T_row(n))

Formula

G.f.: 1/((1 - 2*x)*(1 - 4*x*y)). - Stefano Spezia, Dec 09 2023
Showing 1-5 of 5 results.