A094015
Expansion of (1+4*x)/(1-8*x^2).
Original entry on oeis.org
1, 4, 8, 32, 64, 256, 512, 2048, 4096, 16384, 32768, 131072, 262144, 1048576, 2097152, 8388608, 16777216, 67108864, 134217728, 536870912, 1073741824, 4294967296, 8589934592, 34359738368, 68719476736, 274877906944
Offset: 0
-
a094015 = sum . a152842_row -- Reinhard Zumkeller, May 01 2014
-
[2*8^Floor((n-1)/2)*(3+(-1)^n): n in [0..30]]; // G. C. Greubel, Nov 22 2021
-
a:=n->mul(3-(-1)^j,j=1..n):seq(a(n),n=0..25); # Zerinvary Lajos, Dec 13 2008
-
Table[8^Floor[n/2]*Mod[4^n, 5], {n, 0, 30}] (* G. C. Greubel, Nov 22 2021 *)
-
[8^(n//2)*(4^n%5) for n in (0..30)] # G. C. Greubel, Nov 22 2021
A113836
a(n) = Sum[2^(A001651(i-1)-1), {i,1,n}].
Original entry on oeis.org
1, 3, 11, 27, 91, 219, 731, 1755, 5851, 14043, 46811, 112347, 374491, 898779, 2995931, 7190235, 23967451, 57521883, 191739611, 460175067, 1533916891, 3681400539, 12271335131, 29451204315, 98170681051, 235609634523
Offset: 1
a(2) = 2^(A001651(0)-1) + 2^(A001651(1)-1) = 2^0 + 2^1 = 3
-
a = {}; s = 0; For[n = 1, n < 40, n++, If[Length[Intersection[{Mod[n, 3]}, {1,2}]] > 0, s = s + 2^(n - 1); AppendTo[a, s]]]; a
A135536
a(n) = 8*a(n-2), with a(0) = 7, a(1) = 14.
Original entry on oeis.org
7, 14, 56, 112, 448, 896, 3584, 7168, 28672, 57344, 229376, 458752, 1835008, 3670016, 14680064, 29360128, 117440512, 234881024, 939524096, 1879048192, 7516192768, 15032385536, 60129542144, 120259084288, 481036337152
Offset: 0
-
Table[(7/4)*( (2 + Sqrt[2]) + (-1)^n*(2 - Sqrt[2]) )*(Sqrt[2])^(3*n), {n,0,25}] (* or *) LinearRecurrence[{0,8},{7,14}, 25] (* G. C. Greubel, Oct 18 2016 *)
-
a(n)=([0,1; 8,0]^n*[7;14])[1,1] \\ Charles R Greathouse IV, Oct 18 2016
A235202
Numbers written in an alternating binary-then-quaternary base.
Original entry on oeis.org
1, 10, 11, 20, 21, 30, 31, 100, 101, 110, 111, 120, 121, 130, 131, 1000, 1001, 1010, 1011, 1020, 1021, 1030, 1031, 1100, 1101, 1110, 1111, 1120, 1121, 1130, 1131, 2000, 2001, 2010, 2011, 2020, 2021, 2030, 2031, 2100
Offset: 1
a(15) = 131 since 15 = 1*1+3*2+1*8.
Cf.
A109827 (Numbers written in an alternating binary-then-ternary base).
A368043
Triangle read by rows: T(n, k) = 2^(n + k).
Original entry on oeis.org
1, 2, 4, 4, 8, 16, 8, 16, 32, 64, 16, 32, 64, 128, 256, 32, 64, 128, 256, 512, 1024, 64, 128, 256, 512, 1024, 2048, 4096, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144
Offset: 0
[0] [ 1]
[1] [ 2, 4]
[2] [ 4, 8, 16]
[3] [ 8, 16, 32, 64]
[4] [ 16, 32, 64, 128, 256]
[5] [ 32, 64, 128, 256, 512, 1024]
[6] [ 64, 128, 256, 512, 1024, 2048, 4096]
[7] [128, 256, 512, 1024, 2048, 4096, 8192, 16384]
[8] [256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536]
Cf.
A000079 (T(n,0)),
A004171 (T(n,n-1)),
A000302 (T(n,n)),
A171476 (row sums),
A003683 (alternating row sums),
A134353 (antidiagonal sums),
A001018 (T(2n, n)),
A094014 (T(n, n/2)),
A002697.
-
Array[2^Range[#,2#]&,10,0] (* Paolo Xausa, Dec 09 2023 *)
-
from functools import cache
@cache
def T_row(n: int) -> list[int]:
if n == 0: return [1]
row = T_row(n - 1) + [0]
for k in range(n): row[k] *= 2
row[n] = row[n - 1] * 2
return row
for n in range(11): print(T_row(n))
Showing 1-5 of 5 results.
Comments