A171130 Primes p such that sum of divisors of p+2 is prime.
2, 7, 23, 727, 2399, 5039, 7919, 17159, 28559, 29927, 85847, 458327, 552047, 579119, 707279, 1190279, 3418799, 3728759, 4532639, 5166527, 5331479, 7447439, 10374839, 24137567, 25877567, 28398239, 30260999, 43546799, 47458319, 52258439, 56957207, 62425799
Offset: 1
Keywords
Examples
2 is a term since it is a prime and sigma(2+2) = 7 is a prime. 7 is a term since it is a prime and sigma(7+2) = 13 is a prime. 23 is a term since it is a prime and sigma(23+2) = 31 is a prime. 727 is a term since it is a prime and sigma(727+2) = 1093 is a prime.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): A171130:=n->`if`(isprime(n) and isprime(sigma(n+2)), n, NULL): seq(A171130(n), n=1..10^5); # Wesley Ivan Hurt, Sep 30 2014
-
Mathematica
f[n_]:=Plus@@Divisors[n]; lst={};Do[p=Prime[n];If[PrimeQ[f[p+2]],AppendTo[lst,p]],{n,10!}];lst Select[Prime[Range[700000]],PrimeQ[DivisorSigma[1,#+2]]&] (* Harvey P. Dale, Jun 23 2011 *)
-
PARI
lista(nn) = forprime(p=2, nn, if (isprime(sigma(p+2)), print1(p, ", "))); \\ Michel Marcus, Sep 30 2014
-
PARI
lista(kmax) = {my(p); for(k = 1, kmax, if(isprime(k) || isprimepower(k), p = k^2-2; if(isprime(p) && isprime(sigma(p+2)), print1(p, ", "))));} \\ Amiram Eldar, Aug 01 2024
Extensions
More terms from Michel Marcus, Sep 30 2014
Comments