A171204
G.f. A(x) satisfies A(x) = 1 + x*A(2*x)^5.
Original entry on oeis.org
1, 1, 10, 240, 11280, 1000080, 169100832, 55605632640, 36058105605120, 46450803286978560, 119290436529298554880, 611727201854914747760640, 6268994998754867059071385600, 128439243721180540266999017635840, 5261899692949082390205726962630000640, 431096933496167311430326245852780460769280
Offset: 0
-
terms = 16; A[] = 0; Do[A[x] = 1 + x*A[2x]^5 + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, Apr 02 2025 *)
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1+x*subst(A, x, 2*x)^5); polcoeff(A, n)}
A171193
G.f. A(x) satisfies A(x) = 1/(1 - x*A(2*x)^3).
Original entry on oeis.org
1, 1, 7, 109, 3207, 174581, 17929279, 3559607005, 1389312382199, 1075527698708485, 1658535837898129263, 5105026337441341642861, 31395991691829167745766311, 385982564381552315528268500501
Offset: 0
-
nmax = 15; A[] = 0; Do[A[x] = 1/(1 - x*A[2*x]^3) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Nov 03 2021 *)
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1/(1-x*subst(A, x, 2*x)^3) ); polcoeff(A, n)}
A171195
G.f. A(x) satisfies A(x) = 1/(1 - x*A(2*x)^5).
Original entry on oeis.org
1, 1, 11, 281, 13731, 1245601, 213268203, 70580511385, 45914883339027, 59241954299963729, 152258885235304955131, 781096727709105092232777, 8006263111571482684378716067, 164048440920655457493139473502081
Offset: 0
-
nmax = 15; A[] = 0; Do[A[x] = 1/(1 - x*A[2*x]^5) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Nov 03 2021 *)
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1/(1-x*subst(A, x, 2*x)^5) ); polcoeff(A, n)}
Showing 1-3 of 3 results.