cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171231 a(n) = (10*2^n + 3 - (-1)^n)/6.

Original entry on oeis.org

2, 4, 7, 14, 27, 54, 107, 214, 427, 854, 1707, 3414, 6827, 13654, 27307, 54614, 109227, 218454, 436907, 873814, 1747627, 3495254, 6990507, 13981014, 27962027, 55924054, 111848107, 223696214, 447392427, 894784854, 1789569707
Offset: 0

Views

Author

Paul Curtz, Dec 05 2009

Keywords

Comments

From 14, the last 2 digits are of period 4: repeat [14, 27, 54, 07]. - Paul Curtz, Nov 22 2024

Crossrefs

Cf. A000035, A000975, A048573, A136412 (1st bisection), 2*A136412 (2nd bisection).

Programs

  • Magma
    [( 10*2^n+3-(-1)^n )/6: n in [0..40]]; // Vincenzo Librandi, Aug 05 2011
  • Mathematica
    LinearRecurrence[{2,1,-2},{2,4,7},40] (* Harvey P. Dale, Feb 11 2015 *)
  • PARI
    a(n)=(10<Charles R Greathouse IV, Jul 07 2011
    

Formula

a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3), n >= 3.
a(n+1) - a(n) = A048573(n-1).
a(n) = 2*A000975(n+1) - 3*A000975(n-1).
a(n) - a(n-2) = 5*2^n.
a(n+1) - 2*a(n) = ((-1)^n-1)/2 = -A000035(n).
G.f.: ( 2-3*x^2 ) / ( (x-1)*(2*x-1)*(1+x) ). - R. J. Mathar, Jul 07 2011
a(n) = ceiling( (5/3)*(2^n) ). - Wesley Ivan Hurt, Jun 28 2013

Extensions

Definition replaced by the Lava formula of 2009. Contents converted to formulas. - R. J. Mathar, Jul 07 2011