cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171272 a(n) = 1 + 4*n*(1 + 2*n^2)/3.

Original entry on oeis.org

1, 5, 25, 77, 177, 341, 585, 925, 1377, 1957, 2681, 3565, 4625, 5877, 7337, 9021, 10945, 13125, 15577, 18317, 21361, 24725, 28425, 32477, 36897, 41701, 46905, 52525, 58577, 65077, 72041, 79485, 87425, 95877, 104857, 114381, 124465, 135125, 146377, 158237, 170721, 183845
Offset: 0

Views

Author

Paul Curtz, Dec 06 2009

Keywords

Comments

Binomial transform of quasi-finite sequence 1,4,16,16,0,0,... (0 continued).

Programs

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
First differences: a(n+1) - a(n) = A108099(n).
Second differences: a(n+2) - 2*a(n+1) + a(n) = A008598(n+1).
Third differences: a(n+3) - 3*a(n+2) + 3*a(n+1) - a(n) = 16.
a(n) = (A168574(n) + A168547(n))/2. - This formula is the link to the Janet table of the PSE.
G.f.: ( 1 + x + 11*x^2 + 3*x^3 ) / (x-1)^4. - R. J. Mathar, Jul 07 2011
E.g.f.: (3 +12*x +24*x^2 +8*x^3)*exp(x)/3. - G. C. Greubel, Nov 02 2018