A171473 a(n) = 6*a(n-1) - 8*a(n-2)-3 for n > 1; a(0) = 35, a(1) = 135.
35, 135, 527, 2079, 8255, 32895, 131327, 524799, 2098175, 8390655, 33558527, 134225919, 536887295, 2147516415, 8590000127, 34359869439, 137439215615, 549756338175, 2199024304127, 8796095119359, 35184376283135
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (7,-14,8).
Programs
-
Magma
[32*4^n+4*2^n-1: n in [0..30]]; // Vincenzo Librandi, Jul 18 2011
-
PARI
{m=20; v=concat([35, 135], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-8*v[n-2]-3); v}
Formula
a(n) = 32*4^n + 4*2^n - 1.
G.f.: (35-110*x+72*x^2)/((1-x)*(1-2*x)*(1-4*x)).
a(n) = A092431(n+3).
a(n+1) - a(n) = A049775(n+5).
E.g.f.: exp(x)*(32*exp(3*x) + 4*exp(x) - 1). - Stefano Spezia, Sep 27 2023
Comments