cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A171495 a(n) = 3*a(n-1)+4 for n > 0; a(0) = 6.

Original entry on oeis.org

6, 22, 70, 214, 646, 1942, 5830, 17494, 52486, 157462, 472390, 1417174, 4251526, 12754582, 38263750, 114791254, 344373766, 1033121302, 3099363910, 9298091734, 27894275206, 83682825622, 251048476870, 753145430614, 2259436291846
Offset: 0

Views

Author

Klaus Brockhaus, Dec 10 2009

Keywords

Comments

Binomial transform of A171494; second binomial transform of A010726.
Inverse binomial transform of A171496.

Crossrefs

Equals 2*A171498.
Cf. A010726 (repeat 6, 10), A171494, A171496.

Programs

  • Mathematica
    NestList[3#+4&,6,30] (* Harvey P. Dale, Aug 25 2019 *)
  • PARI
    {m=25; v=concat([6], vector(m-1)); for(n=2, m, v[n]=3*v[n-1]+4); v}

Formula

a(n) = 2*(4*3^n-1).
G.f.: 2*(3-x)/((1-x)*(1-3*x)).

A308700 a(n) = n * 2^(n - 2) * (2^(n - 1) - 1).

Original entry on oeis.org

0, 0, 2, 18, 112, 600, 2976, 14112, 65024, 293760, 1308160, 5761536, 25153536, 109025280, 469704704, 2013143040, 8589672448, 36506664960, 154617643008, 652832538624, 2748773826560, 11544861081600, 48378488553472, 202310091276288, 844424829468672, 3518436999168000
Offset: 0

Views

Author

Stefano Spezia, Jun 17 2019

Keywords

Comments

Given a pseudo-graph P of the set X = {1, 2, ..., n}, defined as a graph represented by the discrete topology on the set X (the power set of X), for n > 0, a(n) is the number of edges of the topological graph arising by deleting loops in P (see Theorem 3.3 in Kozae et al.).

Examples

			For n = 3, the set X = {1,2,3},
  the power set 2^X = {{}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, X} and the pseudo-graph P represented by 2^X has the following edges, here grouped into...
  simple loops:
  {1} --- {1}, {2} --- {2}, {3} --- {3} for a total of 3.
  double loops:
  {1,2} --- {1,2}, {1,3} --- {1,3}, {2,3} --- {2,3} for a total of 6 simple loops.
  triple loop:
  X --- X for a total of 3 simple loops.
  simple edges:
  {1} --- {1,2}, {1} --- {1,3}, {1} --- X, {2} --- {1,2}, {2} --- {2,3}, {2} --- X, {3} --- {1,3}, {3} --- {2,3}, {3} --- X, {1,2} --- {1,3}, {1,2} --- {2,3}, {1,3} --- {2,3} for a total of 12.
  double edges:
  {1,2} --- X, {1,3} --- X, {2,3} --- X for a total of 6 simple edges.
  By deleting the loops in P, there remain a total of a(3) = 12 + 6 = 18 edges for the topological graph arising from P.
		

Crossrefs

Cf. A082134 (total number of edges of the pseudo-graph P).

Programs

  • GAP
    Flat(List([0..25], n->n*2^(n-2)*(2^(n-1)-1)))
    
  • Magma
    [n*2^(n-2)*(2^(n-1)-1): n in [0..25]];
    
  • Maple
    a:=n->n*2^(n-2)*(2^(n-1)-1): seq(a(n),n=0..25);
  • Mathematica
    Table[n 2^(n - 2)(2^(n - 1) - 1), {n, 0, 31}]
  • Maxima
    makelist(n*2^(n-2)*(2^(n-1)-1), n, 0, 25);
    
  • PARI
    a(n)=n*2^(n-2)*(2^(n-1)-1);

Formula

O.g.f.: -2 * x^2 * (-1 + 3*x)/((-1 + 2*x)^2 * (-1 + 4*x)^2).
E.g.f.: (1/2) * exp(2*x) * (-1 + exp(2*x)) * x.
a(n) = 12 * a(n - 1) - 52*a(n - 2) + 96*a(n - 3) - 64*a(n - 4) for n > 3.
a(n) = n * 2^(n - 2) * (2^(n - 1) - 1).
Lim_{n -> infinity} a(n)/a(n - 1) = 4.
a(n) = A082134(n) - A001787(n).
a(n) = A005843(A001787(n)) * A000225(n - 1).
a(n) = n * A006516(n - 1).
a(n) = n * A171476(n - 2).
a(n) = n * A171496(n - 3).
Showing 1-2 of 2 results.