A171495
a(n) = 3*a(n-1)+4 for n > 0; a(0) = 6.
Original entry on oeis.org
6, 22, 70, 214, 646, 1942, 5830, 17494, 52486, 157462, 472390, 1417174, 4251526, 12754582, 38263750, 114791254, 344373766, 1033121302, 3099363910, 9298091734, 27894275206, 83682825622, 251048476870, 753145430614, 2259436291846
Offset: 0
-
NestList[3#+4&,6,30] (* Harvey P. Dale, Aug 25 2019 *)
-
{m=25; v=concat([6], vector(m-1)); for(n=2, m, v[n]=3*v[n-1]+4); v}
A308700
a(n) = n * 2^(n - 2) * (2^(n - 1) - 1).
Original entry on oeis.org
0, 0, 2, 18, 112, 600, 2976, 14112, 65024, 293760, 1308160, 5761536, 25153536, 109025280, 469704704, 2013143040, 8589672448, 36506664960, 154617643008, 652832538624, 2748773826560, 11544861081600, 48378488553472, 202310091276288, 844424829468672, 3518436999168000
Offset: 0
For n = 3, the set X = {1,2,3},
the power set 2^X = {{}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, X} and the pseudo-graph P represented by 2^X has the following edges, here grouped into...
simple loops:
{1} --- {1}, {2} --- {2}, {3} --- {3} for a total of 3.
double loops:
{1,2} --- {1,2}, {1,3} --- {1,3}, {2,3} --- {2,3} for a total of 6 simple loops.
triple loop:
X --- X for a total of 3 simple loops.
simple edges:
{1} --- {1,2}, {1} --- {1,3}, {1} --- X, {2} --- {1,2}, {2} --- {2,3}, {2} --- X, {3} --- {1,3}, {3} --- {2,3}, {3} --- X, {1,2} --- {1,3}, {1,2} --- {2,3}, {1,3} --- {2,3} for a total of 12.
double edges:
{1,2} --- X, {1,3} --- X, {2,3} --- X for a total of 6 simple edges.
By deleting the loops in P, there remain a total of a(3) = 12 + 6 = 18 edges for the topological graph arising from P.
- A. M. Kozae, A. A. El Atik, A. Elrokh and M. Atef, New types of graphs induced by topological spaces, Journal of Intelligent & Fuzzy Systems, vol. 36, no. 6 (2019), pp. 5125-5134; on Research Gate.
- Index entries for linear recurrences with constant coefficients, signature (12,-52,96,-64).
Cf.
A082134 (total number of edges of the pseudo-graph P).
-
Flat(List([0..25], n->n*2^(n-2)*(2^(n-1)-1)))
-
[n*2^(n-2)*(2^(n-1)-1): n in [0..25]];
-
a:=n->n*2^(n-2)*(2^(n-1)-1): seq(a(n),n=0..25);
-
Table[n 2^(n - 2)(2^(n - 1) - 1), {n, 0, 31}]
-
makelist(n*2^(n-2)*(2^(n-1)-1), n, 0, 25);
-
a(n)=n*2^(n-2)*(2^(n-1)-1);
Showing 1-2 of 2 results.
Comments