A171621 Numerator of 1/4 - 1/n^2, each fourth term multiplied by 4.
0, 5, 3, 21, 8, 45, 15, 77, 24, 117, 35, 165, 48, 221, 63, 285, 80, 357, 99, 437, 120, 525, 143, 621, 168, 725, 195, 837, 224, 957, 255, 1085, 288, 1221, 323, 1365, 360, 1517, 399, 1677, 440, 1845, 483, 2021, 528
Offset: 2
Links
- Colin Barker, Table of n, a(n) for n = 2..1000
- Index entries for linear recurrences with constant coefficients, signature (0,3,0,-3,0,1).
Programs
-
Magma
[-(-5+3*(-1)^n)*(-4+n^2)/8: n in [0..100]]; // G. C. Greubel, Sep 19 2018
-
Maple
A061037 := proc(n) 1/4-1/n^2 ; numer(%) ; end proc: A171621 := proc(n) if n mod 4 = 2 then 4*A061037(n) ; else A061037(n) ; end if; end proc: seq(A171621(n),n=2..90) ; # R. J. Mathar, Apr 02 2011
-
Mathematica
Table[-(-5+3*(-1)^n)*(-4+n^2)/8, {n,0,100}] (* G. C. Greubel, Sep 19 2018 *) LinearRecurrence[{0,3,0,-3,0,1},{0,5,3,21,8,45},50] (* Harvey P. Dale, Nov 01 2019 *)
-
PARI
concat(0, Vec(x^3*(-5-3*x-6*x^2+x^3+3*x^4)/((x-1)^3*(1+x)^3) + O(x^100))) \\ Colin Barker, Nov 03 2014
Formula
G.f.: x^3*(-5-3*x-6*x^2+x^3+3*x^4) / ( (x-1)^3*(1+x)^3 ). - R. J. Mathar, Apr 02 2011
a(n) = -(-5+3*(-1)^n)*(-4+n^2)/8. - Colin Barker, Nov 03 2014
Sum_{n>=3} 1/a(n) = 13/12. - Amiram Eldar, Aug 11 2022
Comments