cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171621 Numerator of 1/4 - 1/n^2, each fourth term multiplied by 4.

Original entry on oeis.org

0, 5, 3, 21, 8, 45, 15, 77, 24, 117, 35, 165, 48, 221, 63, 285, 80, 357, 99, 437, 120, 525, 143, 621, 168, 725, 195, 837, 224, 957, 255, 1085, 288, 1221, 323, 1365, 360, 1517, 399, 1677, 440, 1845, 483, 2021, 528
Offset: 2

Views

Author

Paul Curtz, Dec 13 2009

Keywords

Comments

These are the square roots of the fifth column of the array of denominators mentioned in A171522.

Crossrefs

Programs

  • Magma
    [-(-5+3*(-1)^n)*(-4+n^2)/8: n in [0..100]]; // G. C. Greubel, Sep 19 2018
  • Maple
    A061037 := proc(n) 1/4-1/n^2 ; numer(%) ; end proc:
    A171621 := proc(n) if n mod 4 = 2 then 4*A061037(n) ; else A061037(n) ; end if; end proc:
    seq(A171621(n),n=2..90) ; # R. J. Mathar, Apr 02 2011
  • Mathematica
    Table[-(-5+3*(-1)^n)*(-4+n^2)/8, {n,0,100}] (* G. C. Greubel, Sep 19 2018 *)
    LinearRecurrence[{0,3,0,-3,0,1},{0,5,3,21,8,45},50] (* Harvey P. Dale, Nov 01 2019 *)
  • PARI
    concat(0, Vec(x^3*(-5-3*x-6*x^2+x^3+3*x^4)/((x-1)^3*(1+x)^3) + O(x^100))) \\ Colin Barker, Nov 03 2014
    

Formula

a(n) = A061037(n) * A010121(n+2).
a(2n+2) = A005563(n). a(2n+3) = A078371(n).
G.f.: x^3*(-5-3*x-6*x^2+x^3+3*x^4) / ( (x-1)^3*(1+x)^3 ). - R. J. Mathar, Apr 02 2011
a(n) = -(-5+3*(-1)^n)*(-4+n^2)/8. - Colin Barker, Nov 03 2014
Sum_{n>=3} 1/a(n) = 13/12. - Amiram Eldar, Aug 11 2022