cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A261327 a(n) = (n^2 + 4) / 4^((n + 1) mod 2).

Original entry on oeis.org

1, 5, 2, 13, 5, 29, 10, 53, 17, 85, 26, 125, 37, 173, 50, 229, 65, 293, 82, 365, 101, 445, 122, 533, 145, 629, 170, 733, 197, 845, 226, 965, 257, 1093, 290, 1229, 325, 1373, 362, 1525, 401, 1685, 442, 1853, 485, 2029, 530, 2213, 577, 2405, 626, 2605, 677
Offset: 0

Views

Author

Paul Curtz, Aug 15 2015

Keywords

Comments

Using (n+sqrt(4+n^2))/2, after the integer 1 for n=0, the reduced metallic means are b(1) = (1+sqrt(5))/2, b(2) = 1+sqrt(2), b(3) = (3+sqrt(13))/2, b(4) = 2+sqrt(5), b(5) = (5+sqrt(29))/2, b(6) = 3+sqrt(10), b(7) = (7+sqrt(53))/2, b(8) = 4+sqrt(17), b(9) = (9+sqrt(85))/2, b(10) = 5+sqrt(26), b(11) = (11+sqrt(125))/2 = (11+5*sqrt(5))/2, ... . The last value yields the radicals in a(n) or A013946.
b(2) = 2.41, b(3) = 3.30, b(4) = 4.24, b(5) = 5.19 are "good" approximations of fractal dimensions corresponding to dimensions 3, 4, 5, 6: 2.48, 3.38, 4.33 and 5.45 based on models. See "Arbres DLA dans les espaces de dimension supérieure: la théorie des peaux entropiques" in Queiros-Condé et al. link. DLA: beginning of the title of the Witten et al. link.
Consider the symmetric array of the half extended Rydberg-Ritz spectrum of the hydrogen atom:
0, 1/0, 1/0, 1/0, 1/0, 1/0, 1/0, 1/0, ...
-1/0, 0, 3/4, 8/9, 15/16, 24/25, 35/36, 48/49, ...
-1/0, -3/4, 0, 5/36, 3/16, 21/100, 2/9, 45/196, ...
-1/0, -8/9, -5/36, 0, 7/144, 16/225, 1/12, 40/441, ...
-1/0, -15/16, -3/16, -7/144, 0, 9/400, 5/144, 33/784, ...
-1/0, -24/25, -21/100, -16/225, -9/400, 0, 11/900, 24/1225, ...
-1/0, -35/36, -2/9, -1/12, -5/144, -11/900, 0, 13/1764, ...
-1/0, -48/49, -45/196, -40/441, -33/784, -24/1225, -13/1764, 0, ... .
The numerators are almost A165795(n).
Successive rows: A000007(n)/A057427(n), A005563(n-1)/A000290(n), A061037(n)/A061038(n), A061039(n)/A061040(n), A061041(n)/A061042(n), A061043(n)/A061044(n), A061045(n)/A061046(n), A061047(n)/A061048(n), A061049(n)/A061050(n).
A144433(n) or A195161(n+1) are the numerators of the second upper diagonal (denominators: A171522(n)).
c(n+1) = a(n) + a(n+1) = 6, 7, 15, 18, 34, 39, 63, 70, 102, 111, ... .
c(n+3) - c(n+1) = 9, 11, 19, 21, 29, 31, ... = A090771(n+2).
The final digit of a(n) is neither 4 nor 8. - Paul Curtz, Jan 30 2019

Crossrefs

Programs

  • Magma
    [Numerator(1+n^2/4): n in [0..60]]; // Vincenzo Librandi, Aug 15 2015
    
  • Maple
    A261327:=n->numer((4 + n^2)/4); seq(A261327(n), n=0..60); # Wesley Ivan Hurt, Aug 15 2015
  • Mathematica
    LinearRecurrence[{0, 3, 0, -3, 0, 1}, {1, 5, 2, 13, 5, 29}, 60] (* Vincenzo Librandi, Aug 15 2015 *)
    a[n_] := (n^2 + 4) / 4^Mod[n + 1, 2]; Table[a[n], {n, 0, 52}] (* Peter Luschny, Mar 18 2022 *)
  • PARI
    vector(60, n, n--; numerator(1+n^2/4)) \\ Michel Marcus, Aug 15 2015
    
  • PARI
    Vec((1+5*x-x^2-2*x^3+2*x^4+5*x^5)/(1-x^2)^3 + O(x^60)) \\ Colin Barker, Aug 15 2015
    
  • PARI
    a(n)=if(n%2,n^2+4,(n/2)^2+1) \\ Charles R Greathouse IV, Oct 16 2015
    
  • Python
    [(n*n+4)//4**((n+1)%2) for n in range(60)] # Gennady Eremin, Mar 18 2022
  • Sage
    [numerator(1+n^2/4) for n in (0..60)] # G. C. Greubel, Feb 09 2019
    

Formula

a(n) = numerator(1 + n^2/4). (Previous name.) See A010685 (denominators).
a(2*k) = 1 + k^2.
a(2*k+1) = 5 + 4*k*(k+1).
a(2*k+1) = 4*a(2*k) + 4*k + 1.
a(4*k+2) = A069894(k). - Paul Curtz, Jan 30 2019
a(-n) = a(n).
a(n+2) = a(n) + A144433(n) (or A195161(n+1)).
a(n) = A168077(n) + period 2: repeat 1, 4.
a(n) = A171621(n) + period 2: repeat 2, 8.
From Colin Barker, Aug 15 2015: (Start)
a(n) = (5 - 3*(-1)^n)*(4 + n^2)/8.
a(n) = n^2/4 + 1 for n even;
a(n) = n^2 + 4 for n odd.
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>5.
G.f.: (1 + 5*x - x^2 - 2*x^3 + 2*x^4 + 5*x^5)/ (1 - x^2)^3. (End)
E.g.f.: (5/8)*(x^2 + x + 4)*exp(x) - (3/8)*(x^2 - x + 4)*exp(-x). - Robert Israel, Aug 18 2015
Sum_{n>=0} 1/a(n) = (4*coth(Pi)+tanh(Pi))*Pi/8 + 1/2. - Amiram Eldar, Mar 22 2022

Extensions

New name by Peter Luschny, Mar 18 2022

A168077 a(2n) = A129194(2n)/2; a(2n+1) = A129194(2n+1).

Original entry on oeis.org

0, 1, 1, 9, 4, 25, 9, 49, 16, 81, 25, 121, 36, 169, 49, 225, 64, 289, 81, 361, 100, 441, 121, 529, 144, 625, 169, 729, 196, 841, 225, 961, 256, 1089, 289, 1225, 324, 1369, 361, 1521, 400, 1681, 441, 1849, 484, 2025, 529, 2209, 576, 2401, 625, 2601
Offset: 0

Views

Author

Paul Curtz, Nov 18 2009

Keywords

Comments

From Paul Curtz, Mar 26 2011: (Start)
Successive A026741(n) * A026741(n+p):
p=0: 0, 1, 1, 9, 4, 25, 9, a(n),
p=1: 0, 1, 3, 6, 10, 15, 21, A000217,
p=2: 0, 3, 2, 15, 6, 35, 12, A142705,
p=3: 0, 2, 5, 9, 14, 20, 27, A000096,
p=4: 0, 5, 3, 21, 8, 45, 15, A171621,
p=5: 0, 3, 7, 12, 18, 25, 33, A055998,
p=6: 0, 7, 4, 27, 10, 55, 18,
p=7: 0, 4, 9, 15, 22, 30, 39, A055999,
p=8: 0, 9, 5, 33, 12, 65, 21, (see A061041),
p=9: 0, 5, 11, 18, 26, 35, 45, A056000. (End)
The moment generating function of p(x, m=2, n=1, mu=2) = 4*x*E(x, 2, 1), see A163931 and A274181, is given by M(a) = (-4 * log(1-a) - 4 * polylog(2, a))/a^2. The series expansion of M(a) leads to the sequence given above. - Johannes W. Meijer, Jul 03 2016
Multiplicative because both A129194 and A040001 are. - Andrew Howroyd, Jul 26 2018

Crossrefs

Programs

  • Magma
    I:=[0,1,1,9,4,25]; [n le 6 select I[n] else 3*Self(n-2)-3*Self(n-4)+Self(n-6): n in [1..60]]; // Vincenzo Librandi, Jul 10 2016
    
  • Maple
    a := proc(n): n^2*(5-3*(-1)^n)/8 end: seq(a(n), n=0..46); # Johannes W. Meijer, Jul 03 2016
  • Mathematica
    LinearRecurrence[{0,3,0,-3,0,1},{0,1,1,9,4,25},60] (* Harvey P. Dale, May 14 2011 *)
    f[n_] := Numerator[(n/2)^2]; Array[f, 60, 0] (* Robert G. Wilson v, Dec 18 2012 *)
    CoefficientList[Series[x(1+x+6x^2+x^3+x^4)/((1-x)^3(1+x)^3), {x,0,60}], x] (* Vincenzo Librandi, Jul 10 2016 *)
  • PARI
    concat(0, Vec(x*(1+x+6*x^2+x^3+x^4)/((1-x)^3*(1+x)^3) + O(x^60))) \\ Altug Alkan, Jul 04 2016
    
  • PARI
    a(n) = lcm(4, n^2)/4; \\ Andrew Howroyd, Jul 26 2018
    
  • Sage
    (x*(1+x+6*x^2+x^3+x^4)/(1-x^2)^3).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, Feb 20 2019

Formula

From R. J. Mathar, Jan 22 2011: (Start)
G.f.: x*(1 + x + 6*x^2 + x^3 + x^4) / ((1-x)^3*(1+x)^3).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6).
a(n) = n^2*(5 - 3*(-1)^n)/8. (End)
a(n) = A026741(n)^2.
a(2*n) = A000290(n); a(2*n+1) = A016754(n).
a(n) - a(n-4) = 4*A064680(n+2). - Paul Curtz, Mar 27 2011
4*a(n) = A061038(n) * A010121(n+2) = A109043(n)^2, n >= 2. - Paul Curtz, Apr 07 2011
a(n) = A129194(n) / A040001(n). - Andrew Howroyd, Jul 26 2018
From Peter Bala, Feb 19 2019: (Start)
a(n) = numerator(n^2/(n^2 + 4)) = n^2/(gcd(n^2,4)) = (n/gcd(n,2))^2.
a(n) = n^2/b(n), where b(n) = [1, 4, 1, 4, ...] is a purely periodic sequence of period 2. Thus a(n) is a quasi-polynomial in n.
O.g.f.: x*(1 + x)/(1 - x)^3 - 3*x^2*(1 + x^2)/(1 - x^2)^3.
Cf. A181318. (End)
From Werner Schulte, Aug 30 2020: (Start)
Multiplicative with a(2^e) = 2^(2*e-2) for e > 0, and a(p^e) = p^(2*e) for prime p > 2.
Dirichlet g.f.: zeta(s-2) * (1 - 3/2^s).
Dirichlet convolution with A259346 equals A000290.
Sum_{n>0} 1/a(n) = Pi^2 * 7 / 24. (End)
Sum_{k=1..n} a(k) ~ (5/24) * n^3. - Amiram Eldar, Nov 28 2022

A229525 Sum of coefficients of the transform ax^2 + (4a/k - b)x + 4a/k^2 + 2b/k + c = 0 for a,b,c = 1,-1,-1, k = 1,2,3...

Original entry on oeis.org

11, 5, 31, 11, 59, 19, 95, 29, 139, 41, 191, 55, 251, 71, 319, 89, 395, 109, 479, 131, 571, 155, 671, 181, 779, 209, 895, 239, 1019, 271, 1151, 305, 1291, 341, 1439, 379, 1595, 419, 1759, 461, 1931, 505, 2111, 551, 2299, 599, 2495, 649, 2699, 701, 2911, 755
Offset: 1

Views

Author

Russell Walsmith, Sep 26 2013

Keywords

Comments

The positive/negative roots of ax^2 + bx + c = 0 combine with the negative/positive roots of (ck^2 - bk + c)x^2 +(2ck - b)x + c = 0 to define a point on the hyperbola kxy + x + y = 0. To shift such points (roots) to the hyperbola’s other line, put the coefficients of these equations into the formula Q = ax^2 + (4a/k - b)x + 4a/k^2 + 2b/k + c = 0. For a,b,c = 1,-1,-1 and k = 1,2,3..., the coefficients given by Q are the sequence 1,5,5; 1,3,1; 1,7/3,1/9... Clearing fractions and summing a+b+c gives the sequence.
The negative of the n-th term is the n+4th term of the c coefficient sequence A229526.

Examples

			For k = 5, the coefficients are 1, 9/5, -11/25. Clearing fractions, 25, 45, -11 and 25 + 45 -11 = 59 = a[5].
		

Crossrefs

The a coefficients are A168077, b coefficients are A171621, c coefficients are A229526.

Programs

  • PARI
    Vec(-x*(x^5-x^4-4*x^3-2*x^2+5*x+11)/((x-1)^3*(x+1)^3) + O(x^100)) \\ Colin Barker, Nov 02 2014

Formula

ax^2 + (4a/k - b)x + 4a/k^2 + 2b/k + c; a,b,c = 1,-1,-1, k = 1,2,3... n.
a(n) = 3*a(n-2)-3*a(n-4)+a(n-6). G.f.: -x*(x^5-x^4-4*x^3-2*x^2+5*x+11) / ((x-1)^3*(x+1)^3). - Colin Barker, Nov 02 2014
a(n) = -(-5+3*(-1)^n)*(4+6*n+n^2)/8. - Colin Barker, Nov 03 2014

Extensions

More terms from Colin Barker, Nov 02 2014

A229526 The c coefficients of the transform ax^2 + (4a/k - b)x + 4a/k^2 + 2b/k + c= 0 for a,b,c = 1,-1,-1, k = 1,2,3...

Original entry on oeis.org

5, 1, 1, -1, -11, -5, -31, -11, -59, -19, -95, -29, -139, -41, -191, -55, -251, -71, -319, -89, -395, -109, -479, -131, -571, -155, -671, -181, -779, -209, -895, -239, -1019, -271, -1151, -305, -1291, -341, -1439, -379, -1595, -419, -1759, -461, -1931, -505
Offset: 1

Views

Author

Russell Walsmith, Sep 27 2013

Keywords

Comments

The positive/negative roots of ax^2 + bx + c = 0 combine with the negative/positive roots of (ck^2 - bk + c)x^2 +(2ck - b)x + c = 0 to define a point on the hyperbola kxy + x + y = 0. To shift such points (roots) to the hyperbola’s other line, put the coefficients of these equations into the formula ax^2 + (4a/k - b)x + 4a/k^2 + 2b/k + c = 0. Let a,b,c = 1,-1,-1 and k = 1,2,3... Then the coefficients given by this last equation are the sequence 1,5,5; 1,3,1; 1,7/3,1/9... Clearing fractions, the c coefficients are the sequence above.
The n-th term = the (positive) n-4th term of A229525.

Examples

			For k = 5, the coefficients are 1, 9/5, -11/25. Clearing fractions gives 25, 45, -11 and -11 = a[5].
		

Crossrefs

The a coefficients are A168077, b coefficients are A171621, the sum of a, b and c coefficients is A229525.

Programs

  • PARI
    Vec(-x*(x^5+x^4-4*x^3-14*x^2+x+5)/((x-1)^3*(x+1)^3) + O(x^100)) \\ Colin Barker, Nov 02 2014

Formula

ax^2 + (4a/k - b)x + 4a/k^2 + 2b/k + c; a,b,c = 1,-1,-1, k = 1,2,3..n.
a(n) = 3*a(n-2)-3*a(n-4)+a(n-6). G.f.: -x*(x^5+x^4-4*x^3-14*x^2+x+5) / ((x-1)^3*(x+1)^3). - Colin Barker, Nov 02 2014
a(n) = (-5+3*(-1)^n)*(-4-2*n+n^2)/8. - Colin Barker, Nov 03 2014

Extensions

More terms from Colin Barker, Nov 02 2014

A171638 Denominator of 1/(n-2)^2 - 1/(n+2)^2.

Original entry on oeis.org

0, 25, 9, 441, 64, 2025, 225, 5929, 576, 13689, 1225, 27225, 2304, 48841, 3969, 81225, 6400, 127449, 9801, 190969, 14400, 275625, 20449, 385641, 28224, 525625, 38025, 700569, 50176, 915849, 65025, 1177225, 82944, 1490841
Offset: 2

Views

Author

Paul Curtz, Dec 13 2009

Keywords

Comments

Fifth column of an array of denominators related to the energies of the hydrogen spectrum, mentioned in A171522. At n=2, the defining formula has a pole and is replaced by 0 to conform with A171621 and A099761.

Crossrefs

Programs

  • Magma
    [0] cat [Denominator((1/(n-2)^2 -1/(n+2)^2)): n in [3..350]]; // Bruno Berselli, Apr 05 2011
    
  • Maple
    A061037 := proc(n) 1/4-1/n^2 ; numer(%) ; end proc:
    A171621 := proc(n) if n mod 4 = 2 then 4*A061037(n) ; else A061037(n) ; end if; end proc:
    A171638 := proc(n) A171621(n)^2 ; end proc:
    seq(A171638(n),n=2..90) ; # R. J. Mathar, Apr 02 2011
  • Mathematica
    Table[If[n == 2, 0, Denominator[1/(n-2)^2 - 1/(n+2)^2]], {n, 2, 50}] (* G. C. Greubel, Sep 20 2018 *)
    LinearRecurrence[{0,5,0,-10,0,10,0,-5,0,1},{0,25,9,441,64,2025,225,5929,576,13689},50] (* Harvey P. Dale, Sep 07 2021 *)
  • PARI
    for(n=2,100, print1(if(n==2,0, denominator(1/(n-2)^2 - 1/(n+2)^2)), ", ")) \\ G. C. Greubel, Sep 20 2018

Formula

a(n) = (A171621(n))^2.
a(2*n+2) = A099761(n).
G.f.: -((x(25+9*x+316*x^2+19*x^3+70*x^4-5*x^5-36*x^6+x^7+9*x^8))/((-1+x)^5 (1+x)^5)). - Harvey P. Dale, Sep 07 2021
Sum_{n>=3} 1/a(n) = 19*Pi^2/192 - 115/144. - Amiram Eldar, Aug 14 2022
Showing 1-5 of 5 results.