A262397 a(n) = floor(A261327(n)/9).
0, 0, 0, 1, 0, 3, 1, 5, 1, 9, 2, 13, 4, 19, 5, 25, 7, 32, 9, 40, 11, 49, 13, 59, 16, 69, 18, 81, 21, 93, 25, 107, 28, 121, 32, 136, 36, 152, 40, 169, 44, 187, 49, 205, 53, 225, 58, 245, 64, 267, 69, 289, 75, 312, 81, 336, 87, 361, 93, 387, 100, 413, 106, 441
Offset: 0
Examples
a(0) = floor(1/9) = 0, a(1)= floor (5/9) = 0, a(2) = floor(2/9) = 0, a(3)= floor (13/9) = 1.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-2,0,1).
Programs
-
Mathematica
LinearRecurrence[{0, 3, 0, -3, 0, 1}, {1, 5, 2, 13, 5, 29}, 70]/9 // Floor (* Jean-François Alcover, Sep 26 2015, after Vincenzo Librandi in A261327 *)
-
PARI
a(n) = numerator((n^2+4)/4)\9; \\ Michel Marcus, Sep 22 2015
-
PARI
concat([0,0,0], Vec(-x^3*(x^4 +x^3 +x^2 +x +1)*(x^12 -x^11 +x^10 -x^8 +2*x^6 -x^4 +x^2 -x +1) / ((x -1)^3*(x +1)^3*(x^2 -x +1)*(x^2 +x +1)*(x^6 -x^3 +1)*(x^6 +x^3 +1)) + O(x^100))) \\ Colin Barker, Sep 25 2015
-
PARI
a(n)=if(n%2,n^2+4,(n/2)^2+1)\9 \\ Charles R Greathouse IV, Oct 16 2015
Formula
From Colin Barker, Sep 25 2015: (Start)
a(n) = floor((n^2+4)/36) for n even.
a(n) = floor((n^2+4)/9) for n odd.
G.f.: -x^3*(x^4 +x^3 +x^2 +x +1)*(x^12 -x^11 +x^10 -x^8 +2*x^6 -x^4 +x^2 -x +1) / ((x -1)^3*(x +1)^3*(x^2 -x +1)*(x^2 +x +1)*(x^6 -x^3 +1)*(x^6 +x^3 +1)). (End)
Extensions
New name suggested by Michel Marcus, Sep 22 2015
Comments