cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A262397 a(n) = floor(A261327(n)/9).

Original entry on oeis.org

0, 0, 0, 1, 0, 3, 1, 5, 1, 9, 2, 13, 4, 19, 5, 25, 7, 32, 9, 40, 11, 49, 13, 59, 16, 69, 18, 81, 21, 93, 25, 107, 28, 121, 32, 136, 36, 152, 40, 169, 44, 187, 49, 205, 53, 225, 58, 245, 64, 267, 69, 289, 75, 312, 81, 336, 87, 361, 93, 387, 100, 413, 106, 441
Offset: 0

Views

Author

Paul Curtz, Sep 21 2015

Keywords

Comments

Hexasections:
0, 1, 4, 9, 16, 25, 36, ... = A000290(n)
0, 5, 19, 40, 69, 107, 152, ... = c(n)
0, 1, 5, 11, 18, 28, 40, ... = d(n+1)
1, 9, 25, 49, 81, 121, 169, ... = A016754(n)
0, 2, 7, 13, 21, 32, 44, ... = A240438(n+1)
3, 13, 32, 59, 93, 136, 187, ... = e(n+1).
The six sequences have the signature (2, -1, 1, -2, 1), that is, the signature of a(n) without the 0's.
It appears that d(n+1) and A240438(n+1) are connected via the following scheme.
Let x(n) be the sequence that concatenates terms of d(n+1) in reverse order with terms of A240438(n+1), both without their index_0 term:
..., 18, 11, 5, 1, 0, 0, 2, 7, 13, 21, 32, ...
And consider the first and second differences of this sequence:
..., -7, -6, -4, -1, 0, 2, 5, 6, 8, 11, 12, ...
..., 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, ...
In the first differences, we get A047234(n+1) and A047267(n+1). And in the second differences, we get A010882(n).
In the same way, c(n) and e(n+1) are connected via the first and second differences of this sequence, with both their index_0 term:
..., 69, 40, 19, 5, 0, 3, 13, 32, 59, ...
that are respectively:
..., -29, -21, -14, -5, 3, 10, 19, 27, 34, ...
..., 8, 7, 9, 8, 7, 9, 8, 7, 9, ... .
Is it possible to find a direct definition for a(n)?

Examples

			a(0) = floor(1/9) = 0, a(1)= floor (5/9) = 0, a(2) = floor(2/9) = 0, a(3)= floor (13/9) = 1.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 3, 0, -3, 0, 1}, {1, 5, 2, 13, 5, 29}, 70]/9 // Floor (* Jean-François Alcover, Sep 26 2015, after Vincenzo Librandi in A261327 *)
  • PARI
    a(n) = numerator((n^2+4)/4)\9; \\ Michel Marcus, Sep 22 2015
    
  • PARI
    concat([0,0,0], Vec(-x^3*(x^4 +x^3 +x^2 +x +1)*(x^12 -x^11 +x^10 -x^8 +2*x^6 -x^4 +x^2 -x +1) / ((x -1)^3*(x +1)^3*(x^2 -x +1)*(x^2 +x +1)*(x^6 -x^3 +1)*(x^6 +x^3 +1)) + O(x^100))) \\ Colin Barker, Sep 25 2015
    
  • PARI
    a(n)=if(n%2,n^2+4,(n/2)^2+1)\9 \\ Charles R Greathouse IV, Oct 16 2015

Formula

a(n) = (A261327(n) - A261327(n) mod 9)/9.
From Colin Barker, Sep 25 2015: (Start)
a(n) = floor((n^2+4)/36) for n even.
a(n) = floor((n^2+4)/9) for n odd.
G.f.: -x^3*(x^4 +x^3 +x^2 +x +1)*(x^12 -x^11 +x^10 -x^8 +2*x^6 -x^4 +x^2 -x +1) / ((x -1)^3*(x +1)^3*(x^2 -x +1)*(x^2 +x +1)*(x^6 -x^3 +1)*(x^6 +x^3 +1)). (End)

Extensions

New name suggested by Michel Marcus, Sep 22 2015

A280579 Square array read by antidiagonals downwards giving the first differences A261327(n+p) - A261327(n), with p >= 0.

Original entry on oeis.org

0, 0, 4, 0, -3, 1, 0, 11, 8, 12, 0, -8, 3, 0, 4, 0, 24, 16, 27, 24, 28, 0, -19, 5, -3, 8, 5, 9, 0, 43, 24, 48, 40, 51, 48, 52, 0, -36, 7, -12, 12, 4, 15, 12, 16, 0, 68, 32, 75, 56, 80, 72, 83, 80, 84, 0, -59, 9, -27
Offset: 0

Views

Author

Paul Curtz, Jan 05 2017

Keywords

Comments

Successive rows:
p
0: 0, 0, 0, 0, 0, 0, 0, ...
1: 4, -3, 11, -8, 24, -19, 43, ...
2: 1, 8, 3, 16, 5, 24, 7, ...
3: 12, 0, 27, -3, 48, -12, 75, ...
4: 4, 24, 8, 40, 12, 56, 16, ...
5: 28, 5, 51, 4, 80, -3, 115, ...
6: 9, 48, 15, 72, 21, 96, 27, ...
... .
Main diagonal: alternate 3*n^2, -3.
From p>0, the rows are multiples of 1, 1, 3, 4, 1, 3, 1, 8, 3, 5, 1, 12, 1, 7, 3, 16, 1, ... . Sequences appearing after division: shifted A144433 or A195161, A064680. For p=3, we have (n+2)^2, -n^2.
First column: alternate n^2, 4*(n^2 + n + 1). Its first differences (4, -3, 11, -8, 24, ...) is the sequence of the square array for p=1.
Third column: 0, 3, 8, 15, ... is A005563(n).
Fifth column: 5, 21, 45, 77, ... is a bisection of A061037(n).
Seventh column: 7, 16, 40, 55, 91, 112, ... is a subsequence of A061039(n).
Etc. From the Rydberg spectra of the hydrogen atom (mentioned in A261327).
Starting for instance from p=-3,at the main antidiagonal,yields:
-3: -12, 0, -27, 3, ... see p=3
-2: -1, -8, -3, -16, -5, ... p=2
-1: -4, 3, -11, 8, -24, 19, ... p=1.

Crossrefs

A281098 a(n) is the GCD of the sequence d(n) = A261327(k+n) - A261327(k) for all k.

Original entry on oeis.org

0, 1, 1, 3, 4, 1, 3, 1, 8, 3, 5, 1, 12, 1, 7, 3, 16, 1, 9, 1, 20, 3, 11, 1, 24, 1, 13, 3, 28, 1, 15, 1, 32, 3, 17, 1, 36, 1, 19, 3, 40, 1, 21, 1, 44, 3, 23, 1, 48, 1, 25, 3, 52, 1, 27, 1, 56, 3, 29, 1, 60, 1, 31, 3, 64, 1, 33, 1, 68, 3, 35, 1, 72, 1, 37, 3, 76, 1, 39, 1
Offset: 0

Views

Author

Paul Curtz, Jan 14 2017

Keywords

Comments

Successive sequences:
0: 0, 0, 0, 0, ... = 0 * ( )
1: 4, -3, 11, -8, ... = 1 * ( )
2: 1, 8, 3, 16, ... = 1 * ( ) A195161
3: 12, 0, 27, -3, ... = 3 * (4, 0, 9, -1, ...)
4: 4, 24, 8, 40, ... = 4 * (1, 6, 2, 10, ...) A064680
5; 28, 5, 51, 4, ... = 1 * ( )
6: 9, 48, 15, 72, ... = 3 * (3, 16, 5, 24, ...) A195161
7: 52, 12, 83, 13, ... = 1 * ( )
8: 16, 80, 24, 112, ... = 8 * (2, 10, 3, 14, ...) A064080
9: 84 21, 123, 24, ... = 3 * (28, 7, 41, 8, ...)
10: 25, 120, 35, 160, ... = 5 * (5, 24, 7, 32, ...) A195161

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(-x (-1 - x - 4 x^2 - 5 x^3 - 3 x^4 - 6 x^5 + 3 x^6 - 5 x^7 + 4 x^8 - x^9 + x^10))/((x^2 - x + 1) (1 + x + x^2) (x - 1)^2*(1 + x)^2*(1 + x^2)^2), {x, 0, 79}], x] (* Michael De Vlieger, Feb 02 2017 *)
  • PARI
    f(n) = numerator((4 + n^2)/4);
    a(n) = gcd(vector(1000, k, f(k+n) - f(k))); \\ Michel Marcus, Jan 15 2017
    
  • PARI
    A281098(n) = if(n%2, gcd((n\2)-1,3), n>>(bitand(n,2)/2)); \\ Antti Karttunen, Feb 15 2023

Formula

G.f.: -x*( -1 - x - 4*x^2 - 5*x^3 - 3*x^4 - 6*x^5 + 3*x^6 - 5*x^7 + 4*x^8 - x^9 + x^10 )/( (x^2 - x + 1)*(1 + x + x^2)*(x - 1)^2*(1 + x)^2*(1 + x^2)^2 ). - R. J. Mathar, Jan 31 2017
a(2*k) = A022998(k).
a(2*k+1) = A109007(k-1).
a(3*k) = interleave 3*k*(3 +(-1)^k)/2, 3.
a(3*k+1) = interleave 1, A166304(k).
a(3*k+2) = interleave A166138(k), 1.
a(4*k) = 4*k.
a(4*k+1) = period 3: repeat [1, 1, 3].
a(4*k+2) = 1 + 2*k.
a(4*k+3) = period 3: repeat [3, 1, 1].
a(n+12) - a(n) = 6*A131743(n+3).
a(n) = (18*n + 40 - 16*cos(n*Pi/3) + 9*n*cos(n*Pi/2) + 32*cos(2*n*Pi/3) + (18*n - 40)*cos(n*Pi) + 3*n*cos(3*n*Pi/2) - 16*cos(5*n*Pi/3))/48. - Wesley Ivan Hurt, Oct 04 2018

Extensions

Corrected and extended by Michel Marcus, Jan 15 2017

A306454 a(n) = A261327(n)/A013946(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 25, 1, 1, 25, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 169, 1, 1, 1, 1, 1, 1, 25, 1, 1, 25, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 25, 1, 1, 25, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 289, 1, 1, 1, 1, 1, 841, 1, 1, 1, 25, 1, 1, 25, 1, 1, 1
Offset: 1

Views

Author

Paul Curtz, Feb 16 2019

Keywords

Comments

Are all terms odd squares?
b(n) = A013946(n)*A261327(n) = 25, 4, 169, 25, 841, 100, 2809, 289, 7225, 676, 625, ... . Are all terms squares?
a(n) = A008833(n^2+4) if n is odd and A008833((n^2+4)/4) if n is even, so a(n) is always an odd square. - Jianing Song, Feb 27 2019
Are the square roots only primes?
The sequence of period 4: repeat [25, 1, 1, 25] appears apparently every 25 terms.
From Robert Israel, Mar 20 2019: (Start)
The first term whose square root is not 1 or a prime is a(261) = 25^2.
a(11+25*k) is divisible by 25. The first term where a(11+25*k) > 25 is a(261)=a(11+25*10)=625.
The first term where a(12+25*k) > 1 is a(1212)=a(12+25*48)=169.
The first term where a(13+25*k) > 1 is a(213)=a(13+25*8)=289.
a(14+25*k) is divisible by 25. The first term where a(14+25*k) > 25 is a(364)=a(14+25*14)=625.
All prime factors of members of the sequence are in A002144. For any p in A002144, there is k with 1 <= k < p^2/2 such that p^2 | a(n) if and only if n == k or -k (mod p^2). (End)

Examples

			A261327(n) = 5, 2, 13, 5, 29, 10, 53, 17, 85, 26, 125, 37, 173, 50, ... .
A013946(n) = 5, 2, 13, 5, 29, 10, 53, 17, 85, 26,   5, 37, 173,  2, ... .
		

Crossrefs

Programs

A349118 Row sums of a triangle based on A261327.

Original entry on oeis.org

1, 5, 3, 18, 8, 47, 18, 100, 35, 185, 61, 310, 98, 483, 148, 712, 213, 1005, 295, 1370, 396, 1815, 518, 2348, 663, 2977, 833, 3710, 1030, 4555, 1256, 5520, 1513, 6613, 1803, 7842, 2128, 9215, 2490, 10740, 2891, 12425, 3333, 14278, 3818, 16307, 4348, 18520, 4925
Offset: 2

Views

Author

Paul Curtz, Nov 08 2021

Keywords

Comments

The following triangle has A261327 as its diagonals:
1
5
1 2
5 13
1 2 5
5 13 29
1 2 5 10
5 13 29 53
1 2 5 10 17
5 13 29 53 85
...
a(0) = a(1) = 0.
a(n)'s final digit: neither 4 nor 9.
First full bisection difference table:
0, 1, 3, 8, 18, 35, 61, 98, ... = 0, A081489 = b(n)
1, 2, 5, 10, 17, 26, 37, 50, ... = A002522
1, 3, 5, 7, 9, 11, 13, 15, ... = A005408
2, 2, 2, 2, 2, 2, 2, 2, ... = A007395
0, 0, 0, 0, 0, 0, 0, 0, ... = A000004
Second full bisection difference table:
0, 5, 18, 47, 100, 185, 310, 483, ... = c(n)
5, 13, 29, 53, 85, 125, 173, 229, ... = A078370
8, 16, 24, 32, 40, 48, 56, 64, ... = A008590(n+1)
8, 8, 8, 8, 8, 8, 8, 8, ... = A010731
0, 0, 0, 0, 0, 0, 0, 0, ... = A000004
Both bisections are cubic polynomials.
c(-n) = -c(n).

Crossrefs

Cf. A002522, A005408, A007395, A078370, A081489 (first bisection).
Cf. also A008590, A010731, A261327.

Programs

  • Mathematica
    LinearRecurrence[{0, 4, 0, -6, 0, 4, 0, -1}, {1, 5, 3, 18, 8, 47, 18, 100}, 50] (* Amiram Eldar, Nov 08 2021 *)

Formula

G.f.: (5*x^5+2*x^4-2*x^3-x^2+5*x+1)/((x-1)^4*(x+1)^4).

A069894 Centered square numbers: a(n) = 4*n^2 + 4*n + 2.

Original entry on oeis.org

2, 10, 26, 50, 82, 122, 170, 226, 290, 362, 442, 530, 626, 730, 842, 962, 1090, 1226, 1370, 1522, 1682, 1850, 2026, 2210, 2402, 2602, 2810, 3026, 3250, 3482, 3722, 3970, 4226, 4490, 4762, 5042, 5330, 5626, 5930, 6242, 6562, 6890, 7226, 7570, 7922, 8282
Offset: 0

Views

Author

Glenn B. Cox (igloos_r_us(AT)canada.com), Apr 10 2002

Keywords

Comments

Any number may be substituted for y to yield similar sequences. The number set used determines values given (i.e., integer yields integer). All centered square integers in the set of integers may be found by this formula.
1/2 + 1/10 + 1/26 + ... = (Pi/4)*tanh(Pi/2) [Jolley]. - Gary W. Adamson, Dec 21 2006
For n > 0, a(n-1) is the number of triples (w, x, y) having all terms in {0, ..., n} and min(|w - x|, |x - y|) = 1. - Clark Kimberling, Jun 12 2012
Consider the primitive Pythagorean triples (x(n), y(n), z(n) = y(n) + 1) with n >= 0, and x(n) = 2*n + 1, y(n) = 2*n*(n + 1), z(n) = 2*n*(n + 1) + 1. The sequence, a(n), is 2*z(n). - George F. Johnson, Oct 22 2012
Ulam's spiral (SE corner). See the Wikipedia link. - Kival Ngaokrajang, Jul 25 2014
Conference matrix orders (A000952) of the form n-1 is a perfect square are all in this sequence. All values less than 1000 are conference matrices except for 226 which is still an open question (Balonin & Seberry 2014). - Colin Hall, Nov 21 2018
For n > 0, a(n-1) is the number of maximum number of regions into which the plane can be divided using n convex quadrilaterals. Related: A077588 A077591. - Keyang Li, Jun 17 2022

Examples

			If y = 3, then 81 + 144 = 225; if y = 4, then 12^2 + 16^2 = 20^2; 7^2 + 24^2 = 25^2 = 15^2 + 20^2.
		

References

  • L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, p. 176.

Crossrefs

Programs

Formula

(y*(2*x + 1))^2 + (y*(2*x^2 + 2*x))^2 = (y*(2*x^2 + 2*x + 1))^2, where y = 2. If a^2 + b^2 = c^2, then c^2 = y^2*(4*x^4 + 8*x^3 + 8*x^2 + 4*x + 1). Also 2*A001844.
a(n) = (2*n + 1)^2 + 1. - Vladimir Joseph Stephan Orlovsky, Nov 10 2008 [Corrected by R. J. Mathar, Sep 16 2009]
a(n) = 8*n + a(n-1) for n > 0, a(0)=2. - Vincenzo Librandi, Aug 08 2010
From George F. Johnson, Oct 22 2012: (Start)
G.f.: 2*(1 + x)^2/(1 - x)^3, a(0) = 2, a(1) = 10.
a(n+1) = a(n) + 4 + 4*sqrt(a(n) - 1).
a(n-1) * a(n+1) = (a(n)-4)^2 + 16.
a(n) - 1 = (2*n+1)^2 = A016754(n) for n > 0.
(a(n+1) - a(n-1))/8 = sqrt(a(n) - 1).
a(n+1) = 2*a(n) - a(n-1) + 8 for n > 2, a(0)=2, a(1)=10, a(2)=26.
a(n+1) = 3*a(n) - 3*a(n-1) + a(n-2) for n > 3; a(0)=2, a(1)=10, a(2)=26, a(3)=50.
a(n) = A033996(n) + 2 = A002522(2n + 1).
a(n)^2 = A033996(n)^2 + A016825(n)^2. (End)
a(n) = A001105(n) + A001105(n+1). - Bruno Berselli, Jul 03 2017
E.g.f.: 2*(1 + 4*x + 2*x^2)*exp(x). - G. C. Greubel, Nov 21 2018
a(n) = A261327(4*n+2). - Paul Curtz, Dec 23 2021
a(n) = 2*A001844(n) = 4*A000217(n) + 2*A002061(n+1). - Klaus Purath, Aug 13 2025

Extensions

Edited by Robert G. Wilson v, Apr 11 2002
Offset corrected by Charles R Greathouse IV, Jul 25 2010

A262927 a(n+9) = a(n) + 10*(n+4) + 9. a(0)=0, a(1)=1, a(2)=3, a(3)=6, a(4)=10, a(5)=15, a(6)=23, a(7)=30, a(8)=39.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 23, 30, 39, 49, 60, 72, 85, 99, 114, 132, 149, 168, 188, 209, 231, 254, 278, 303, 331, 358, 387, 417, 448, 480, 513, 547, 582, 620, 657, 696, 736, 777, 819, 862, 906, 951, 999, 1046, 1095, 1145, 1196, 1248, 1301, 1355, 1410, 1468, 1525
Offset: 0

Views

Author

Paul Curtz, Oct 04 2015

Keywords

Comments

The main (or principal) sequence for the 11 steps recurrence is 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 30, 33, 36, ..., the partial sums of A054898.
a(n) mod 9 is a sequence of period 90.

Crossrefs

Programs

  • Magma
    I:=[0,1,3,6,10,15,23,30,39]; [n le 9 select I[n] else (Self(n-9)+10*(n-6)+9): n in [1..60]]; // Vincenzo Librandi, Oct 06 2015
  • Mathematica
    LinearRecurrence[{2, -1, 0, 0, 0, 0, 0, 0, 1, -2, 1}, {0, 1, 3, 6, 10, 15, 23, 30, 39, 49, 60}, 60] (* Vincenzo Librandi, Oct 06 2015 *)
    RecurrenceTable[{a[n+9] == a[n] + 10*(n+4) + 9, a[0]=0, a[1]=1, a[2]=3, a[3]=6, a[4]=10, a[5]=15, a[6]=23, a[7]=30, a[8]=39},a,{n,0,1000}] (* G. C. Greubel, Oct 16 2015 *)
  • PARI
    a(n) = numerator(((2*n)^2+4)/4)\9 + numerator(((2*n+1)^2+4)/4)\9;
    vector(100, n, a(n-1)) \\ Altug Alkan, Oct 04 2015
    
  • PARI
    concat(0, Vec(-x*(x^8+2*x^7-x^6+3*x^5+x^4+x^3+x^2+x+1)/((x-1)^3*(x^2+x+1)*(x^6+x^3+1)) + O(x^100))) \\ Colin Barker, Oct 04 2015
    
  • PARI
    a(n)=((2*n+1)^2+4)\9+(n^2+1)\9 \\ Charles R Greathouse IV, Oct 16 2015
    

Formula

a(n) = A262397(2n) + A262397(2n+1).
a(n) = 2*a(n-1) - a(n-2) + a(n-9) - 2*a(n-10) + a(n-11), n>10.
G.f.: -x*(x^8+2*x^7-x^6+3*x^5+x^4+x^3+x^2+x+1) / ((x-1)^3*(x^2+x+1)*(x^6+x^3+1)). - Colin Barker, Oct 04 2015
a(n) = (5n^2 + 4n)/9 + O(1), or more precisely (5n^2 + 4n + 3)/9 <= a(n) <= (5n^2 + 4n - 10)/9. - Charles R Greathouse IV, Oct 16 2015

A329583 Numerators of 1 + n^2/4 + period 3: repeat [-1, 1, 1].

Original entry on oeis.org

0, 6, 3, 12, 6, 30, 9, 54, 18, 84, 27, 126, 36, 174, 51, 228, 66, 294, 81, 366, 102, 444, 123, 534, 144, 630, 171, 732, 198, 846, 225, 966, 258, 1092, 291, 1230, 324, 1374, 363, 1524, 402, 1686, 441, 1854, 486, 2028, 531, 2214, 576, 2406, 627
Offset: 0

Views

Author

Paul Curtz, Nov 17 2019

Keywords

Comments

First bisection is 3*A008810.

Crossrefs

Programs

  • Mathematica
    MapIndexed[#1 - 2 Boole[Mod[First@ #2, 3] == 1] + 1 &, CoefficientList[Series[(1 + 5 x - x^2 - 2 x^3 + 2 x^4 + 5 x^5)/(1 - x^2)^3, {x, 0, 44}], x]] (* Michael De Vlieger, Nov 18 2019 *)
  • PARI
    concat(0, Vec(3*x*(2 + 3*x + x^2 - 2*x^3 + x^4 + 3*x^5 + 2*x^6) / ((1 - x)^3*(1 + x)^3*(1 + x + x^2)) + O(x^40))) \\ Colin Barker, Nov 24 2019

Formula

a(n) = A261327(n) + A131561(n+2) = (n^2 + 4)*(5 - 3*(-1)^n)/8 + (-1)^((n+1) mod 3).
From Colin Barker, Nov 24 2019: (Start)
G.f.: 3*x*(2 + 3*x + x^2 - 2*x^3 + x^4 + 3*x^5 + 2*x^6) / ((1 - x)^3*(1 + x)^3*(1 + x + x^2)).
a(n) = -a(n-1) + 2*a(n-2) + 3*a(n-3) - 3*a(n-5) - 2*a(n-6) + a(n-7) + a(n-8) for n>8. (End)

Extensions

Incorrect 129 replaced with 123 by Colin Barker, Nov 24 2019

A267942 Interleave (n-1)^2 + 2 and (n+1)^2 + 2.

Original entry on oeis.org

3, 3, 2, 6, 3, 11, 6, 18, 11, 27, 18, 38, 27, 51, 38, 66, 51, 83, 66, 102, 83, 123, 102, 146, 123, 171, 146, 198, 171, 227, 198, 258, 227, 291, 258, 326, 291, 363, 326, 402, 363, 443, 402, 486, 443, 531, 486, 578, 531, 627, 578, 678, 627, 731, 678, 786, 731
Offset: 0

Views

Author

Paul Curtz, Jan 22 2016

Keywords

Comments

Trisections:
3, 6, 6, 27, 27, 66, 66, ... = 3*(1, 2, 2, 9, 9, 22, 22, ... ). See A056105.
3, 3, 18, 18, 51, 51, 102, ... = 3*(1, 1, 6, 6, 17, 17, ... ). See A056109.
2, 11, 11, 38, 38, 83, 83, ... (== 2 (mod 9)).
The trisections also have the signature (1,2,-2,-1,1). The corresponding main sequence is 0, 0, 0, 0, 1, 1, 3, 3, ... = A161680(n) with each term duplicated.

Examples

			a(0) = (2+13)/5, a(1) = (13+2)/5, a(2) = (5+5)/5, a(3) = (29+1)/5, ... (using first formula).
		

Crossrefs

Programs

  • Magma
    &cat [[(n-1)^2+2, (n+1)^2+2]: n in [0..50]]; // Vincenzo Librandi, Jan 23 2016
  • Mathematica
    Flatten[Table[{n^2 - 2 n + 3, n^2 + 2 n + 3}, {n, 0, 30}]] (* Vincenzo Librandi, Jan 23 2016 *)
    CoefficientList[Series[(3 - 7 x^2 + 4 x^3 + 2 x^4)/((1 - x)^3 (1 + x)^2), {x, 0, 56}], x] (* Michael De Vlieger, Jan 24 2016 *)
  • PARI
    Vec((3-7*x^2+4*x^3+2*x^4)/((1-x)^3*(1+x)^2) + O(x^100)) \\ Colin Barker, Jan 22 2016
    

Formula

a(n) = (A261327(n+2) + A261327(n-3))/5.
a(n+1) = a(n) + (-1)^n * A022998(n), a(0)=3.
a(n+3) = a(n) + 3*A193356(n), a(0)=a(1)=3, a(2)=2.
a(n) = 3 + A174474(n).
a(2n) + a(2n+1) = A255844(n).
From Colin Barker, Jan 22 2016: (Start)
a(n) = (2*n^2 - 6*(-1)^n*n - 2*n + 3*(-1)^n + 21)/8.
a(n) = (n^2 - 4*n + 12)/4 for n even.
a(n) = (n^2 + 2*n + 9)/4 for n odd.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 4.
G.f.: (3 - 7*x^2 + 4*x^3 + 2*x^4) / ((1-x)^3*(1+x)^2).
(End)

Extensions

More terms from Colin Barker, Jan 22 2016

A323178 a(n) = 1 + 100*n^2 for n >= 0.

Original entry on oeis.org

1, 101, 401, 901, 1601, 2501, 3601, 4901, 6401, 8101, 10001, 12101, 14401, 16901, 19601, 22501, 25601, 28901, 32401, 36101, 40001, 44101, 48401, 52901, 57601, 62501, 67601, 72901, 78401, 84101, 90001, 96101, 102401, 108901
Offset: 0

Views

Author

Paul Curtz, Jan 06 2019

Keywords

Comments

Terms of A261327 ending in 1 (01 for n > 0.)
a(n) mod 9 = period 9: repeat [1, 2, 5, 1, 8, 8, 1, 5, 2] = A275704(n+3).
(Analogous sequence: b(n) = 29 + 100*n*(n+1) = A261327(A017329) = 29, 229, 629, ... .)

Crossrefs

Subsequence of A017281.

Programs

  • Mathematica
    a[n_] := 1 + 100*n^2 ; Array[a, 50, 0] (* or *)
    CoefficientList[Series[(-1 - 98 x - 101 x^2)/(-1 + x)^3, {x, 0, 50}], x] (* or *)
    CoefficientList[Series[E^x (1 + 100 x + 100 x^2), {x, 0, 50}], x]*Table[n!, {n, 0, 50}] (* Stefano Spezia, Jan 06 2019 *)

Formula

a(n) = A261327(A008602(n)).
Recurrence: a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2 with initial values a(0) = 1, a(1) = 101 and a(2) = 401.
From Stefano Spezia, Jan 06 2019: (Start)
O.g.f.: (-1 - 98*x - 101*x^2)/(-1 + x)^3.
E.g.f.: exp(x)*(1 + 100*x + 100*x^2).
(End)

Extensions

Corrected and extended (recurrence formula) by Werner Schulte, Feb 18 2019
Showing 1-10 of 11 results. Next