cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A171634 Number of compositions of n such that the number of parts is divisible by the greatest part.

Original entry on oeis.org

1, 1, 3, 2, 8, 13, 21, 38, 89, 173, 302, 545, 1109, 2309, 4564, 8601, 16188, 31365, 62518, 125813, 251119, 493123, 956437, 1854281, 3633938, 7218166, 14444539, 28868203, 57300450, 112921744, 221760513, 436117749, 861764899, 1711773936
Offset: 1

Views

Author

Vladeta Jovovic, Dec 13 2009

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n,t,g) option remember; `if`(n=0, `if`(irem(t, g)=0, 1, 0), add(b(n-i, t+1, max(i, g)), i=1..n)) end: a:= n-> b(n,0,0): seq(a(n), n=1..40); # Alois P. Heinz, Dec 15 2009
  • Mathematica
    b[n_, t_, g_] := b[n, t, g] = If[n == 0, If [Mod[t, g] == 0, 1, 0], Sum[b[n - i, t + 1, Max[i, g]], {i, 1, n}]];
    a[n_] := b[n, 0, 0];
    Array[a, 40] (* Jean-François Alcover, Nov 11 2020, after Alois P. Heinz *)

Formula

G.f.: Sum_{n>=0} Sum_{d|n} ((x^(d+1)-x)^n-(x^d-x)^n)/(x-1)^n.

Extensions

More terms from Alois P. Heinz, Dec 15 2009

A199885 Number of compositions of n such that the greatest part is not divisible by the number of parts.

Original entry on oeis.org

0, 1, 1, 6, 10, 23, 49, 106, 215, 444, 906, 1849, 3759, 7621, 15402, 31091, 62676, 126206, 253860, 510204, 1024665, 2056608, 4125625, 8272436, 16580967, 33223336, 66550937, 133278720, 266857006, 534220745, 1069297319, 2140037990, 4282507048, 8569103770
Offset: 1

Views

Author

Alois P. Heinz, Nov 11 2011

Keywords

Examples

			a(4) = 6: [1,1,1,1], [1,1,2], [1,2,1], [1,3], [2,1,1], [3,1].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t, g) option remember; `if`(n=0, `if`(irem(g, t)=0, 0, 1), add(b(n-i, t+1, max(i, g)), i=1..n)) end: a:= n-> b(n, 0, 0): seq(a(n), n=1..40);
  • Mathematica
    b[n_, t_, g_] := b[n, t, g] = If[n == 0, If[Mod[g, t] == 0, 0, 1], Sum [b[n-i, t+1, Max[i, g]], {i, 1, n}]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Nov 05 2014, after Alois P. Heinz *)

Formula

G.f.: Sum_{n>0} (2^(n-1)*x^n-Sum_{d|n} ((x^(n+1)-x)^d-(x^n-x)^d)/(x-1)^d).
a(n) = A000079(n-1) - A171632(n).

A383101 Number of compositions of n such that any part 1 can be m different colors where m is the largest part of the composition.

Original entry on oeis.org

1, 1, 2, 6, 21, 77, 294, 1178, 4978, 22191, 104146, 513385, 2653003, 14349804, 81125023, 478686413, 2943737942, 18838530436, 125268429098, 864256288435, 6177766228172, 45689641883377, 349173454108407, 2754058599745239, 22393206702946457, 187501022603071090
Offset: 0

Views

Author

John Tyler Rascoe, Apr 16 2025

Keywords

Examples

			a(3) = 6 counts: (3), (2,1_a), (2,1_b), (1_a,2), (1_b,2), (1_a,1_a,1_a).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, p, m) option remember; binomial(n+p, n)*
          m^n+add(b(n-j, p+1, max(m, j)), j=2..n)
        end:
    a:= n-> b(n, 0, 1):
    seq(a(n), n=0..25);  # Alois P. Heinz, Apr 23 2025
  • PARI
    A_x(N) = {my(x='x+O('x^N)); Vec(1+sum(m=1,N, x^m/((1-m*x-(x^2-x^m)/(1-x))*(1-m*x-(x^2-x^(m+1))/(1-x)))))}
    A_x(30)

Formula

G.f.: 1 + Sum_{m>0} x^m/((1 - m*x - (x^2 - x^m)/(1 - x)) * (1 - m*x - (x^2 - x^(m+1))/(1 - x))).
Showing 1-3 of 3 results.