cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171638 Denominator of 1/(n-2)^2 - 1/(n+2)^2.

Original entry on oeis.org

0, 25, 9, 441, 64, 2025, 225, 5929, 576, 13689, 1225, 27225, 2304, 48841, 3969, 81225, 6400, 127449, 9801, 190969, 14400, 275625, 20449, 385641, 28224, 525625, 38025, 700569, 50176, 915849, 65025, 1177225, 82944, 1490841
Offset: 2

Views

Author

Paul Curtz, Dec 13 2009

Keywords

Comments

Fifth column of an array of denominators related to the energies of the hydrogen spectrum, mentioned in A171522. At n=2, the defining formula has a pole and is replaced by 0 to conform with A171621 and A099761.

Crossrefs

Programs

  • Magma
    [0] cat [Denominator((1/(n-2)^2 -1/(n+2)^2)): n in [3..350]]; // Bruno Berselli, Apr 05 2011
    
  • Maple
    A061037 := proc(n) 1/4-1/n^2 ; numer(%) ; end proc:
    A171621 := proc(n) if n mod 4 = 2 then 4*A061037(n) ; else A061037(n) ; end if; end proc:
    A171638 := proc(n) A171621(n)^2 ; end proc:
    seq(A171638(n),n=2..90) ; # R. J. Mathar, Apr 02 2011
  • Mathematica
    Table[If[n == 2, 0, Denominator[1/(n-2)^2 - 1/(n+2)^2]], {n, 2, 50}] (* G. C. Greubel, Sep 20 2018 *)
    LinearRecurrence[{0,5,0,-10,0,10,0,-5,0,1},{0,25,9,441,64,2025,225,5929,576,13689},50] (* Harvey P. Dale, Sep 07 2021 *)
  • PARI
    for(n=2,100, print1(if(n==2,0, denominator(1/(n-2)^2 - 1/(n+2)^2)), ", ")) \\ G. C. Greubel, Sep 20 2018

Formula

a(n) = (A171621(n))^2.
a(2*n+2) = A099761(n).
G.f.: -((x(25+9*x+316*x^2+19*x^3+70*x^4-5*x^5-36*x^6+x^7+9*x^8))/((-1+x)^5 (1+x)^5)). - Harvey P. Dale, Sep 07 2021
Sum_{n>=3} 1/a(n) = 19*Pi^2/192 - 115/144. - Amiram Eldar, Aug 14 2022