cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171662 a(n) = floor((2*n^2 + n)/6).

Original entry on oeis.org

0, 0, 1, 3, 6, 9, 13, 17, 22, 28, 35, 42, 50, 58, 67, 77, 88, 99, 111, 123, 136, 150, 165, 180, 196, 212, 229, 247, 266, 285, 305, 325, 346, 368, 391, 414, 438, 462, 487, 513, 540, 567, 595, 623, 652, 682, 713, 744, 776, 808, 841, 875, 910, 945
Offset: 0

Views

Author

Michael Somos, Dec 14 2009

Keywords

Crossrefs

Cf. A078617.

Programs

  • Magma
    [Floor((2*n^2+n)/6): n in [0..60]]; // G. C. Greubel, Sep 25 2018
  • Mathematica
    Table[Floor[(2n^2+n)/6],{n,0,60}] (* or *) LinearRecurrence[{2,-1,0,0,0,1,-2,1},{0,0,1,3,6,9,13,17},60] (* Harvey P. Dale, Oct 15 2014 *)
  • PARI
    {a(n) = (2 * n^2 + n) \ 6};
    

Formula

a(n) = floor(n*(2*n + 1)/6).
a(n) = A078617(-1 - n) for all n in Z.
a(n) = floor((n+1)/(exp(3/(n+1)) - 1)). - Richard R. Forberg, Jun 22 2013
G.f.: -x^2*(x^4 + x^2 + x + 1)/( (x+1) * (x^2+x+1) * (x^2-x+1) * (x-1)^3). - Alois P. Heinz, Jun 24 2013
a(n) = 2*a(n-1) - a(n-2) + a(n-6) - 2*a(n-7) + a(n-8); a(0)=0, a(1)=0, a(2)=1, a(3)=3, a(4)=6, a(5)=9, a(6)=13, a(7)=17. - Harvey P. Dale, Oct 15 2014
36*a(n) = 6*n +12*n^2 -11 +3*(-1)^n +2*A061347(n) +6*A057079(n+2). - R. J. Mathar, Apr 26 2022