cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171714 a(n) = ceiling((n+1)^4/2).

Original entry on oeis.org

1, 8, 41, 128, 313, 648, 1201, 2048, 3281, 5000, 7321, 10368, 14281, 19208, 25313, 32768, 41761, 52488, 65161, 80000, 97241, 117128, 139921, 165888, 195313, 228488, 265721, 307328, 353641, 405000, 461761, 524288, 592961, 668168, 750313, 839808
Offset: 0

Views

Author

Adi Dani, May 29 2011

Keywords

Comments

Number of compositions of even natural numbers into 4 parts <=n.
Number of ways of placings of an even number of indistinguishable objects into 4 distinguishable boxes with the condition that in each box there can be at most n objects.

Examples

			a(1)=8: there are 8 compositions of even natural numbers into 4 parts <=1
(0,0,0,0);
(0,0,1,1), (0,1,0,1), (0,1,1,0), (1,0,0,1), (1,0,1,0), (1,1,0,0);
(1,1,1,1).
a(2)=41: there are 41 compositions of even natural numbers into 4 parts <=2
for 0: (0,0,0,0);
for 2: (0,0,0,2), (0,0,2,0), (0,2,0,0), (2,0,0,0), (0,0,1,1), (0,1,0,1), (0,1,1,0), (1,0,0,1), (1,0,1,0), (1,1,0,0);
for 4: (0,0,2,2), (0,2,0,2), (0,2,2,0), (2,0,0,2), (2,0,2,0), (2,2,0,0), (0,1,1,2), (0,1,2,1), (0,2,1,1), (1,0,1,2), (1,0,2,1), (1,1,0,2), (1,1,2,0), (1,2,0,1), (1,2,1,0), (2,0,1,1), (2,1,0,1), (2,1,1,0), (1,1,1,1);
for 6: (0,2,2,2), (2,0,2,2), (2,2,0,2), (2,2,2,0), (1,1,2,2), (1,2,1,2), (1,2,2,1), (2,1,1,2), (2,1,2,1), (2,2,1,1);
for 8: (2,2,2,2).
		

Crossrefs

Programs

  • Magma
    [1/2*((n+1)^4+((1+(-1)^n)*1/2)^4): n in [0..40]]; // Vincenzo Librandi, Jun 16 2011
    
  • Mathematica
    Table[1/2((n + 1)^4 + ((1 + (-1)^n)*1/2)^4), {n, 0, 25}]
    Ceiling[Range[40]^4/2] (* Bruno Berselli, Jan 18 2017 *)
  • PARI
    a(n) = ceil(n^4/2); \\ Michel Marcus, Dec 14 2013

Formula

a(n) = 1/2*((n + 1)^4 + ((1 + (-1)^n)*1/2)^4).
a(n) = +4*a(n-1) -5*a(n-2) +5*a(n-4) -4*a(n-5) +1*a(n-6).
G.f.: (1 + 4*x + 14*x^2 + 4*x^3 + x^4)/((1 + x)*(1 - x)^5).
a(n) = (n+1)^4 - floor((n+1)^4/2). - Bruno Berselli, Jan 18 2017

Extensions

Better name from Enrique Pérez Herrero, Dec 14 2013