A171769 Partial sums of A042964 (numbers congruent to 2 or 3 mod 4).
2, 5, 11, 18, 28, 39, 53, 68, 86, 105, 127, 150, 176, 203, 233, 264, 298, 333, 371, 410, 452, 495, 541, 588, 638, 689, 743, 798, 856, 915, 977, 1040, 1106, 1173, 1243, 1314, 1388, 1463, 1541, 1620, 1702, 1785, 1871, 1958, 2048, 2139, 2233, 2328, 2426, 2525
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Crossrefs
Programs
-
GAP
a:=[2,5,11,18];; for n in [5..60] do a[n]:=2*a[n-1]-2*a[n-3] + a[n-4]; od; a; # G. C. Greubel, Jul 02 2019
-
Magma
[Ceiling((2*n+1)*n/2): n in [1..60]]; // Vincenzo Librandi, Jul 02 2019
-
Mathematica
a[n_]:=Ceiling[((2n+1)n/2)]; Array[a, 60] (* Vincenzo Librandi, Jul 02 2019 *) LinearRecurrence[{2,0,-2,1}, {2,5,11,18}, 60] (* G. C. Greubel, Jul 02 2019 *)
-
PARI
Vec(x*(x^2+x+2)/((1-x)^3*(x+1)) + O(x^60)) \\ Colin Barker, Jun 04 2014
-
Sage
[ceiling(n*(1+2*n)/2) for n in (1..60)] # G. C. Greubel, Jul 02 2019
Formula
a(n) = Sum_{i=1..n} A042964(i).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). - R. H. Hardin, Nov 13 2011
a(n) = ceiling((2*n+1)*n/2). - Andrew Woods, Jun 06 2013
G.f.: x*(2+x+x^2) / ((1-x)^3*(x+1)). - Colin Barker, Jun 04 2014
a(n) = round(n/(1-exp(-1/n))). - Richard R. Forberg, Jan 28 2015
Comments