cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171769 Partial sums of A042964 (numbers congruent to 2 or 3 mod 4).

Original entry on oeis.org

2, 5, 11, 18, 28, 39, 53, 68, 86, 105, 127, 150, 176, 203, 233, 264, 298, 333, 371, 410, 452, 495, 541, 588, 638, 689, 743, 798, 856, 915, 977, 1040, 1106, 1173, 1243, 1314, 1388, 1463, 1541, 1620, 1702, 1785, 1871, 1958, 2048, 2139, 2233, 2328, 2426, 2525
Offset: 1

Views

Author

Jaroslav Krizek, Dec 18 2009

Keywords

Comments

If we insert an initial 0, and alternate the signs: 0,2,-5,11,-18,28,..., we get a sequence where the average of the first n terms is an integer, with no repeats: specifically A001057(n-1). The sum of the first n terms is (-1)^(n-1)*A093353(n-1). - Franklin T. Adams-Watters, May 20 2010
Suppose that n cards have the numbers 1..2n written on them randomly, one number to a side, and are set out on a table randomly. You have the task of maximizing the sum of the visible numbers by flipping cards. If you have no information other than the numbers on the upper faces, and may not flip any particular card more than once, a(n) is the largest sum you can guarantee in the worst case. - Andrew Woods, Jun 06 2013

Crossrefs

Programs

  • GAP
    a:=[2,5,11,18];; for n in [5..60] do a[n]:=2*a[n-1]-2*a[n-3] + a[n-4]; od; a; # G. C. Greubel, Jul 02 2019
  • Magma
    [Ceiling((2*n+1)*n/2): n in [1..60]]; // Vincenzo Librandi, Jul 02 2019
    
  • Mathematica
    a[n_]:=Ceiling[((2n+1)n/2)]; Array[a, 60] (* Vincenzo Librandi, Jul 02 2019 *)
    LinearRecurrence[{2,0,-2,1}, {2,5,11,18}, 60] (* G. C. Greubel, Jul 02 2019 *)
  • PARI
    Vec(x*(x^2+x+2)/((1-x)^3*(x+1)) + O(x^60)) \\ Colin Barker, Jun 04 2014
    
  • Sage
    [ceiling(n*(1+2*n)/2) for n in (1..60)] # G. C. Greubel, Jul 02 2019
    

Formula

a(n) = Sum_{i=1..n} A042964(i).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). - R. H. Hardin, Nov 13 2011
a(n) = ceiling((2*n+1)*n/2). - Andrew Woods, Jun 06 2013
G.f.: x*(2+x+x^2) / ((1-x)^3*(x+1)). - Colin Barker, Jun 04 2014
a(n) = round(n/(1-exp(-1/n))). - Richard R. Forberg, Jan 28 2015