cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171804 G.f. satisfies: A(x) = P(x*A(x)^3) where A(x/P(x)^3) = P(x) is the g.f. for partition numbers (A000041).

Original entry on oeis.org

1, 1, 5, 33, 252, 2090, 18299, 166450, 1557595, 14898228, 145003996, 1431487820, 14299208690, 144262270360, 1467857359738, 15045486643137, 155208575698230, 1610201799670560, 16788969497000365, 175838914655128068
Offset: 0

Views

Author

Paul D. Hanna, Dec 20 2009

Keywords

Examples

			From _Peter Bala_, Nov 12 2024: (Start)
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + ...
I(P(x)) = 1 + x + 3*x^2 + 10*x^3 + 38*x^4 + 153*x^5 + 646*x^6 + 2816*x^7 + ...
I^2(P(x)) = 1 + x + 4*x^2 + 20*x^3 + 115*x^4 + 714*x^5 + 4669*x^6 + 31671*x^7 + ...
I^3(P(x)) = 1 + x + 5*x^2 + 33*x^3 + 252*x^4 + 2090*x^5 + 18299*x^6 + 166450*x^7 + ... = the g.f. A(x). (End)
		

Crossrefs

Programs

  • PARI
    a(n)=polcoeff((1/x*serreverse(x*eta(x+x*O(x^n))^3))^(1/3), n)
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1/prod(k=1, n, (1-x^k*(A^3+x*O(x^n))^k))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*A^(3*m)/prod(k=1, m, (1-x^k+x*O(x^n))))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, sqrtint(n+1), x^(m^2)*A^(3*m)/prod(k=1, m, (1-x^k)*(1-x^k*A^3+x*O(x^n))))); polcoeff(A, n)}

Formula

G.f. satisfies
(1) A(x) = 1/Product_{k>0} (1-x^k*A(x)^3).
(2) A(x) = Sum_{n>=0} x^n*A(x)^(3*n) / Product_{k=1..n} (1-x^k*A(x)^(3*k)).
(3) A(x) = Sum_{n>=0} x^(n^2)*A(x)^(3*n^2) / Product_{k=1..n} (1-x^k*A(x)^(3*k))^2.
G.f.: A(x) = 1 + x + 5*x^2 + 33*x^3 + 252*x^4 + 2090*x^5 + ...
G.f. satisfies A(x/P(x)^3) = P(x) where:
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + ...
and x/P(x)^3 = x - 3*x^2 + 5*x^4 - 7*x^7 + 9*x^11 - 11*x^16 + ...
Also, the g.f. A = A(x) satisfies:
(1) A(x) = 1/((1-x*A^3) * (1-x^2*A^6) * (1-x^3*A^9) * (1-x^4*A^12) * ...).
(2) A(x) = 1 + x*A^3/(1-x*A^3) + x^2*A^6/((1-x*A^3)*(1-x^2*A^6)) + x^3*A^9/((1-x*A^3)*(1-x^2*A^6)*(1-x^3*A^9)) + ...
(3) A(x) = 1 + x*A^3/(1-x*A^3)^2 + x^4*A^12/((1-x*A^3)*(1-x^2*A^6))^2 + x^9*A^27/((1-x*A^3)*(1-x^2*A^6)*(1-x^3*A^9))^2 + ...
From Peter Bala, Nov 12 2024: (Start)
A(x) = ( 1/x * series_reversion(x/P(x)^3) )^(1/3).
A(x) = the third iterate I^3(P(x)), where the operator I is defined by I(f(x)) = 1/x * series_reversion(x/f(x)). See the Example section. (Note that I(P(x)) is the g.f. of A109085 and I^2(P(x)) is the g.f. of A171802.) (End)