A171980
Prime divisors of elements of A129066.
Original entry on oeis.org
5, 3001, 120041, 532501, 720241, 2160721, 3937501, 9375001, 16505501, 120040001, 158453021, 165055001, 202567501, 289312501, 562500061, 900307501, 985937501, 1500512501, 1512504701, 3169060421, 3301100021, 3908604433, 3993757501
Offset: 1
A129066
Numbers k such that k divides Fibonacci(k) with multiples of 12 excluded.
Original entry on oeis.org
1, 5, 25, 125, 625, 3125, 15625, 75025, 78125, 375125, 390625, 1875625, 1953125, 9378125, 9765625, 46890625, 48828125, 234453125, 244140625, 332813125, 1172265625, 1220703125, 1664065625, 5628750625, 5861328125, 6103515625, 8320328125, 9006076025
Offset: 1
a(1) = Fibonacci(1) = 1,
a(2) = Fibonacci(5) = 5,
a(3)..a(7) = {5^2, 5^3, 5^4, 5^5, 5^6},
a(8) = 75025 = 5^2*3001 = Fibonacci(5^2),
a(9) = 5^7,
a(10) = 375125 = 5^3*3001 = 5*Fibonacci(5^2),
a(11) = 5^8.
Prime divisors are given in
A171980. Their smallest multiples are given in
A171981.
-
Do[ If[ !IntegerQ[ n/12 ] && IntegerQ[ Fibonacci[n] / n ], Print[n] ], {n,1,5^8} ]
-
is(n)=n%12 && (Mod([0,1;1,1],n)^n*[0;1])[1,1]==0 \\ Charles R Greathouse IV, Nov 04 2016
A354027
Smallest k dividing 3^k + 4^k that have divisor A354026(n).
Original entry on oeis.org
7, 2653, 4941601, 236474833, 20930936750059, 4899815786803, 330219333283, 4455186224209, 9770481627816301, 351829430300299, 26064955344333473991073, 192144131632327, 3006539977771582357, 2059085249993107, 13468375028434716454309, 1753571527639980559, 2338095370082599813
Offset: 1
Showing 1-3 of 3 results.
Comments