Original entry on oeis.org
5, 75025, 9006076025, 332813125, 54036081025, 162108093025, 12304690625, 3662109765625, 1238325212525, 225150026875625, 8562180281412026525, 309581286250625, 15197626762525, 4520507828125, 2059936966552758203125
Offset: 1
A087807
Prime factors of solutions to 24^n == 1 (mod n).
Original entry on oeis.org
23, 47, 14759, 49727, 124799, 304751, 497261, 609503, 1828507, 2685259, 10741037, 12872687, 13877879, 23462213, 23652649, 27755759, 29134267, 31908959, 53753807, 65205263, 132771091, 218148653, 341965703, 551361983, 734951759
Offset: 1
A014960(12) = 2870377 = 23 * 124799
A129066
Numbers k such that k divides Fibonacci(k) with multiples of 12 excluded.
Original entry on oeis.org
1, 5, 25, 125, 625, 3125, 15625, 75025, 78125, 375125, 390625, 1875625, 1953125, 9378125, 9765625, 46890625, 48828125, 234453125, 244140625, 332813125, 1172265625, 1220703125, 1664065625, 5628750625, 5861328125, 6103515625, 8320328125, 9006076025
Offset: 1
a(1) = Fibonacci(1) = 1,
a(2) = Fibonacci(5) = 5,
a(3)..a(7) = {5^2, 5^3, 5^4, 5^5, 5^6},
a(8) = 75025 = 5^2*3001 = Fibonacci(5^2),
a(9) = 5^7,
a(10) = 375125 = 5^3*3001 = 5*Fibonacci(5^2),
a(11) = 5^8.
Prime divisors are given in
A171980. Their smallest multiples are given in
A171981.
-
Do[ If[ !IntegerQ[ n/12 ] && IntegerQ[ Fibonacci[n] / n ], Print[n] ], {n,1,5^8} ]
-
is(n)=n%12 && (Mod([0,1;1,1],n)^n*[0;1])[1,1]==0 \\ Charles R Greathouse IV, Nov 04 2016
A354026
Primes that divide some k dividing 4^k + 3^k (A045584).
Original entry on oeis.org
7, 379, 14407, 689431, 4235659, 41647747, 137534083, 239900179, 242121643, 349909477, 1245283747, 1478065891, 1605314383, 2500276549, 2748751303, 5618210347, 7490947129, 11236420693, 11260421089, 16948514941, 29440659361, 74163546829, 75093609319, 82188727303
Offset: 1
-
S=[]; forprime(p=5,oo, f=Set(factor(znorder(Mod(-3/4,p)))[,1]); if(#setintersect(S,f)==#f, S=setunion(S,[p]); print1(p,", ")));
Showing 1-4 of 4 results.
Comments