cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172073 a(n) = (4*n^3 + n^2 - 3*n)/2.

Original entry on oeis.org

0, 1, 15, 54, 130, 255, 441, 700, 1044, 1485, 2035, 2706, 3510, 4459, 5565, 6840, 8296, 9945, 11799, 13870, 16170, 18711, 21505, 24564, 27900, 31525, 35451, 39690, 44254, 49155, 54405, 60016, 66000, 72369, 79135, 86310, 93906, 101935, 110409, 119340, 128740
Offset: 0

Views

Author

Vincenzo Librandi, Jan 25 2010

Keywords

Comments

14-gonal (or tetradecagonal) pyramidal numbers generated by the formula n*(n+1)*(2*d*n-(2*d-3))/6 for d=6.
In fact, the sequence is related to A000567 by a(n) = n*A000567(n) - Sum_{i=0..n-1} A000567(i) and this is the case d=6 in the identity n*(n*(d*n-d+2)/2) - Sum_{k=0..n-1} k*(d*k-d+2)/2 = n*(n+1)*(2*d*n-2*d+3)/6. - Bruno Berselli, Nov 29 2010
Except for the initial 0, this is the principal diagonal of the convolution array A213761. - Clark Kimberling, Jul 04 2012
Starting (1, 15, 54, ...), this is the binomial transform of (1, 14, 25, 12, 0, 0, 0, ...). - Gary W. Adamson, Jul 29 2015

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93. - Bruno Berselli, Feb 13 2014

Crossrefs

Cf. similar sequences listed in A237616.

Programs

  • GAP
    List([0..40], n-> n*(n+1)*(4*n-3)/2); # G. C. Greubel, Aug 30 2019
  • Magma
    [(4*n^3+n^2-3*n)/2: n in [0..50]]; // Vincenzo Librandi, Jan 01 2014
    
  • Maple
    seq(n*(n+1)*(4*n-3)/2, n=0..40); # G. C. Greubel, Aug 30 2019
  • Mathematica
    f[n_]:= n(n+1)(4n-3)/2; Array[f, 40, 0]
    LinearRecurrence[{4,-6,4,-1},{0,1,15,54},40] (* Harvey P. Dale, Jan 29 2013 *)
    CoefficientList[Series[x (1+11x)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jan 01 2014 *)
  • PARI
    a(n)=(4*n^3+n^2-3*n)/2 \\ Charles R Greathouse IV, Oct 07 2015
    
  • Sage
    [n*(n+1)*(4*n-3)/2 for n in (0..40)] # G. C. Greubel, Aug 30 2019
    

Formula

a(n) = n*(n+1)*(4*n-3)/2.
From Bruno Berselli, Dec 15 2010: (Start)
G.f.: x*(1+11*x)/(1-x)^4.
a(n) = Sum_{i=0..n} A051866(i). (End)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3, a(0)=0, a(1)=1, a(2)=15, a(3)=54. - Harvey P. Dale, Jan 29 2013
a(n) = Sum_{i=0..n-1} (n-i)*(12*i+1), with a(0)=0. - Bruno Berselli, Feb 10 2014
From Amiram Eldar, Jan 10 2022: (Start)
Sum_{n>=1} 1/a(n) = 4*Pi/21 + 8*log(2)/7 - 2/7.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*sqrt(2)*Pi/21 + 8*sqrt(2)*log(sqrt(2)+2)/21 - (20 + 4*sqrt(2))*log(2)/21 + 2/7. (End)
E.g.f.: exp(x)*x*(2 + 13*x + 4*x^2)/2. - Elmo R. Oliveira, Aug 04 2025

Extensions

Edited by Bruno Berselli, Dec 14 2010