cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172082 a(n) = n*(n+1)*(6*n-5)/2.

Original entry on oeis.org

0, 1, 21, 78, 190, 375, 651, 1036, 1548, 2205, 3025, 4026, 5226, 6643, 8295, 10200, 12376, 14841, 17613, 20710, 24150, 27951, 32131, 36708, 41700, 47125, 53001, 59346, 66178, 73515, 81375, 89776, 98736, 108273, 118405, 129150, 140526
Offset: 0

Views

Author

Vincenzo Librandi, Jan 25 2010

Keywords

Comments

Generated by formula: n*(n+1)*(2*d*n-2*d+3)/6 with d=9.
This sequence is related to A051682 by a(n) = n*A051682(n) - Sum_{i=0..n-1} A051682(i); in fact this is the case d=9 in the identity n*(n*(d*n-d+2)/2) - Sum_{i=0..n-1} i*(d*i-d+2)/2 = n*(n+1)*(2*d*n -2*d + 3)/6. - Bruno Berselli, Apr 16 2012

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93. - Bruno Berselli, Feb 13 2014

Crossrefs

Cf. A051682.
Cf. similar sequences listed in A237616.

Programs

  • GAP
    List([0..40], n-> n*(n+1)*(6*n-5)/2); # G. C. Greubel, Aug 30 2019
  • Magma
    [(18*n^3+3*n^2-15*n)/6: n in [0..40]]; // Vincenzo Librandi, Jan 02 2014
    
  • Maple
    seq(n*(n+1)*(6*n-5)/2, n=0..40); # G. C. Greubel, Aug 30 2019
  • Mathematica
    Table[(18n^3+3n^2-15n)/6,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1}, {0,1,21,78}, 40] (* Harvey P. Dale, Jun 29 2011 *)
    CoefficientList[Series[x*(1+17*x)/(1-x)^4, {x,0,40}], x] (* Vincenzo Librandi, Jan 02 2014 *)
  • PARI
    vector(40, n, n*(n-1)*(6*n-11)/2) \\ G. C. Greubel, Aug 30 2019
    
  • Sage
    [n*(n+1)*(6*n-5)/2 for n in (0..40)] # G. C. Greubel, Aug 30 2019
    

Formula

a(0)=0, a(1)=1, a(2)=21, a(3)=78; for n>3, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Jun 29 2011
G.f.: x*(1+17*x)/(1-x)^4. - Harvey P. Dale, Jun 29 2011
a(n) = Sum_{i=0..n-1} (n-i)*(18*i+1), with a(0)=0. - Bruno Berselli, Feb 10 2014
E.g.f.: x*(2 + 19*x + 6*x^2)*exp(x)/2. - G. C. Greubel, Aug 30 2019
From Amiram Eldar, Jan 10 2022: (Start)
Sum_{n>=1} 1/a(n) = 2*(3*sqrt(3)*Pi + 9*log(3) + 12*log(2) - 5)/55.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(6*Pi + 6*sqrt(3)*log(sqrt(3)+2) - 16*log(2) + 5)/55. (End)