A172082 a(n) = n*(n+1)*(6*n-5)/2.
0, 1, 21, 78, 190, 375, 651, 1036, 1548, 2205, 3025, 4026, 5226, 6643, 8295, 10200, 12376, 14841, 17613, 20710, 24150, 27951, 32131, 36708, 41700, 47125, 53001, 59346, 66178, 73515, 81375, 89776, 98736, 108273, 118405, 129150, 140526
Offset: 0
References
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93. - Bruno Berselli, Feb 13 2014
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Bruno Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian), 2008.
- Index to sequences related to pyramidal numbers.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
GAP
List([0..40], n-> n*(n+1)*(6*n-5)/2); # G. C. Greubel, Aug 30 2019
-
Magma
[(18*n^3+3*n^2-15*n)/6: n in [0..40]]; // Vincenzo Librandi, Jan 02 2014
-
Maple
seq(n*(n+1)*(6*n-5)/2, n=0..40); # G. C. Greubel, Aug 30 2019
-
Mathematica
Table[(18n^3+3n^2-15n)/6,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1}, {0,1,21,78}, 40] (* Harvey P. Dale, Jun 29 2011 *) CoefficientList[Series[x*(1+17*x)/(1-x)^4, {x,0,40}], x] (* Vincenzo Librandi, Jan 02 2014 *)
-
PARI
vector(40, n, n*(n-1)*(6*n-11)/2) \\ G. C. Greubel, Aug 30 2019
-
Sage
[n*(n+1)*(6*n-5)/2 for n in (0..40)] # G. C. Greubel, Aug 30 2019
Formula
a(0)=0, a(1)=1, a(2)=21, a(3)=78; for n>3, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Jun 29 2011
G.f.: x*(1+17*x)/(1-x)^4. - Harvey P. Dale, Jun 29 2011
a(n) = Sum_{i=0..n-1} (n-i)*(18*i+1), with a(0)=0. - Bruno Berselli, Feb 10 2014
E.g.f.: x*(2 + 19*x + 6*x^2)*exp(x)/2. - G. C. Greubel, Aug 30 2019
From Amiram Eldar, Jan 10 2022: (Start)
Sum_{n>=1} 1/a(n) = 2*(3*sqrt(3)*Pi + 9*log(3) + 12*log(2) - 5)/55.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(6*Pi + 6*sqrt(3)*log(sqrt(3)+2) - 16*log(2) + 5)/55. (End)
Comments