cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172117 a(n) = n*(n+1)*(20*n-17)/6.

Original entry on oeis.org

0, 1, 23, 86, 210, 415, 721, 1148, 1716, 2445, 3355, 4466, 5798, 7371, 9205, 11320, 13736, 16473, 19551, 22990, 26810, 31031, 35673, 40756, 46300, 52325, 58851, 65898, 73486, 81635, 90365, 99696, 109648, 120241, 131495, 143430, 156066
Offset: 0

Views

Author

Vincenzo Librandi, Jan 26 2010

Keywords

Comments

Generated by the formula n*(n+1)*(2*d*n-2*d+3)/6 for d=10.
This sequence is related to A051624 by a(n) = n*A051624(n) - Sum_{i=0..n-1} A051624(i) = n*(n+1)*(20*n-17)/2; in fact, this is the case d=10 in the identity n*(n*(d*n-d+2)/2) - Sum_{i=0..n-1} i*(d*i-d+2)/2 = n*(n+1)*(2*d*n-2*d+3)/6. - Bruno Berselli, Aug 26 2010
Also, a(n) = n*A190816(n) - Sum_{i=0..n-1} A190816(i) for n>0. - Bruno Berselli, Dec 18 2013
Starting with offset 1, the sequence is the binomial transform of (1, 22, 41, 20, 0, 0, 0, ...). - Gary W. Adamson, Jul 31 2015

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93. [Bruno Berselli, Feb 13 2014]

Crossrefs

Cf. A051624.
Cf. similar sequences listed in A237616.

Programs

  • Magma
    [n*(n+1)*(20*n-17)/6: n in [0..50]]; // Vincenzo Librandi, Aug 01 2015
    
  • Mathematica
    Table[(20n^3+3n^2-17n)/6,{n,0,50}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,1,23,86},40] (* Harvey P. Dale, May 15 2011 *)
  • PARI
    a(n)=n*(20*n^2+3*n-17)/6 \\ Charles R Greathouse IV, Jan 11 2012
    
  • SageMath
    [sum( (-1)^j*(20-j)*binomial(n+2-j, 3-j) for j in (0..1)) for n in (0..50)] # G. C. Greubel, Apr 15 2022

Formula

G.f.: x*(1+19*x)/(1-x)^4. - Bruno Berselli, Aug 26 2010
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3. - Harvey P. Dale, May 15 2011
a(n) = Sum_{i=0..n-1} (n-i)*(20*i+1), with a(0)=0. - Bruno Berselli, Feb 11 2014
E.g.f.: (1/6)*x*(6 + 63*x + 20*x^2)*exp(x). - G. C. Greubel, Apr 15 2022