cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172118 a(n) = n*(n+1)*(5*n^2 - n - 3)/2.

Original entry on oeis.org

0, 1, 45, 234, 730, 1755, 3591, 6580, 11124, 17685, 26785, 39006, 54990, 75439, 101115, 132840, 171496, 218025, 273429, 338770, 415170, 503811, 605935, 722844, 855900, 1006525, 1176201, 1366470, 1578934, 1815255, 2077155, 2366416, 2684880
Offset: 0

Views

Author

Vincenzo Librandi, Jan 26 2010

Keywords

Crossrefs

Cf. A172117.

Programs

  • Magma
    [n*(n+1)*(5*n^2-n-3)/2: n in [0..50]]; // Vincenzo Librandi, Aug 20 2014
    
  • Mathematica
    Table[n*(n+1)*(5*n^2-n-3)/2, {n, 0, 40}] (* or *) CoefficientList[Series[x(1 +40x +19x^2)/(1-x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 20 2014 *)
    LinearRecurrence[{5,-10,10,-5,1},{0,1,45,234,730},40] (* Harvey P. Dale, Jul 20 2022 *)
  • SageMath
    [n*(n+1)*(5*n^2-n-3)/2 for n in (0..50)] # G. C. Greubel, Apr 15 2022

Formula

From Bruno Berselli, May 07 2010: (Start)
a(n) = n*(n*(n+1)*(20*n-17)/6) - Sum_{i=0..n-1} ( i*(i+1)*(20*i-17)/2 ).
a(n) = n*(n+1)*(5*n^2-n-3)/2.
More generally: n*(n*(n+1)*(2*d*n-2*d+3)/6) - Sum_{i=0..n-1} ( i*(i+1)*(2*d*i-2*d+3)/6, i=0..n-1 ) = n*(n+1)*(3*d*n^2 - d*n + 4*n - 2*d + 2)/12; in this sequence is d=10. (End)
G.f. x*(1+40*x+19*x^2)/(1-x)^5. - R. J. Mathar, Nov 17 2011
From G. C. Greubel, Apr 15 2022: (Start)
a(n) = 12*binomial(n+3,4) - 78*binomial(n+2,3) + 19*binomial(n+1,2).
E.g.f.: (1/2)*x*(2 + 43*x + 34*x^2 + 5*x^3)*exp(x). (End)

Extensions

Formula simplified and sequence A172117 corrected by Bruno Berselli, May 07 2010