cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A179017 Odd numbers c such that c*(c^2 - 1)/4 is squarefree.

Original entry on oeis.org

3, 5, 11, 13, 21, 29, 43, 59, 61, 67, 69, 77, 83, 85, 93, 115, 123, 131, 133, 139, 141, 155, 157, 165, 173, 187, 203, 205, 211, 213, 219, 221, 227, 229, 237, 259, 267, 277, 283, 285, 291, 309, 317, 331, 347, 355, 357, 365, 371, 373, 381, 389, 403, 411, 419, 421
Offset: 1

Views

Author

Artur Jasinski, Jun 24 2010

Keywords

Comments

Original title was: "Numbers c such that (c^2-1)c is square free and gcd(c-1,c,c+1)=1", but (c^2-1)c is never squarefree for odd c, and gcd(n,n+1) is always = 1. - M. F. Hasler, Nov 03 2013
These numbers c with distribution a+b=c such that a=(c-1)/2 (see A172186) and b=(c+1)/2 (see A179019) have minimal possible values with function L(a,b,c) = log(c)/log(N(a,b,c)) = log(c)/log((c^2-1)c/4).
This function is minimal orbital in hypothesis (a,b,c).
There are no numbers or distributions which have value L less than log(c)/log((c^2-1)*c/4).
Equivalently, odd squarefree numbers c such that (c^2 - 1)/4 is also squarefree. - Jon E. Schoenfield, Feb 13 2023
The asymptotic density of this sequence is Product_{p prime} (1 - 3/p^2) = A206256 = 0.125486980905... (Tsang, 1985). - Amiram Eldar, Feb 26 2024

Crossrefs

Programs

  • Mathematica
    aa = {}; Do[If[(GCD[x, (x - 1)/2] == 1) && (GCD[x, (x + 1)/2] == 1) && (GCD[(x - 1)/2, (x + 1)/2] == 1), If[SquareFreeQ[(x^2 - 1) x/4], AppendTo[aa, x]]], {x, 2, 1000}]; aa
  • PARI
    forstep(n=3,421,2,issquarefree(n*(n^2-1)/4)&&print1(n",")) \\ M. F. Hasler, Nov 03 2013
    
  • PARI
    is(n)=n%2 && issquarefree(n) && issquarefree(n^2\4) \\ Charles R Greathouse IV, Mar 11 2014

Formula

a(n) = 2*A172186(n) + 1. - Bernard Schott, Mar 06 2023

Extensions

Edited by M. F. Hasler, Nov 03 2013

A172120 Numbers k for which maxima of the function log(k)/log(N(a, k-a, k)) occurs for two or more distinct values of a. (a < k-a, function N(a, k-a, k) is the squarefree kernel of a*(k-a)*k and gcd(a, k-a, k) = 1.)

Original entry on oeis.org

7, 11, 13, 15, 19, 21, 25, 35, 40, 47, 61, 63, 73, 79, 95, 97, 107, 115, 121, 133, 143, 145, 149, 151, 156, 166, 167, 169, 181, 184, 187, 191, 203, 205, 207, 211, 215, 221, 223, 227, 235, 241, 255, 259, 271, 273, 293, 295, 301, 302, 323, 329, 331, 333, 355, 364
Offset: 1

Views

Author

Artur Jasinski, Jan 26 2010

Keywords

Comments

This sequence is related to the ABC conjecture.

Examples

			a(1)=7 because the maxima of log(7)/log(N(a, 7-a, 7)) occur at two distinct values, a=1 and a=3. In both cases, log(c)/log(N(a,b,c)) is equal to log(7)/log(42).
		

Crossrefs

Programs

  • Mathematica
    cc = {}; Do[k = x; w = Floor[(k - 1)/2]; logmax = 0; nmax = 0; nmax1 = 0; radmax = 0; logequal = 0; Do[If[(GCD[n, k] == 1) && (GCD[n, k - n] == 1) && (GCD[k, k - n] == 1), m = FactorInteger[k n (k - n)]; rad = 1; Do[rad = rad m[[s]][[1]], {s, 1, Length[m]}]; log = Log[k]/Log[rad]; If[log == logmax, logequal = log; nmax1 = n];If[log > logmax, nmax = n; logmax = log]], {n, 1, w}]; If[logequal == logmax, AppendTo[cc, k]], {x, 3, 100}]; cc
  • PARI
    rad(n) = factorback(factorint(n)[, 1]); \\ A007947
    isok(n) = {my(lim = if (n%2, n\2, n/2 - 1), v = vector(lim, k, if (gcd([k, n, n-k]) == 1, log(n)/log(rad(k*(n-k)*n)), 0))); if (#v, #select(x->(x==vecmax(v)), v) > 1);} \\ Michel Marcus, Aug 04 2019

Extensions

Offset 1 and name corrected by Michel Marcus, Aug 04 2019

A179019 a(n) = (A179017(n)+1)/2.

Original entry on oeis.org

2, 3, 6, 7, 11, 15, 22, 30, 31, 34, 35, 39, 42, 43, 47, 58, 62, 66, 67, 70, 71, 78, 79, 83, 87, 94, 102, 103, 106, 107, 110, 111, 114, 115, 119, 130, 134, 139, 142, 143, 146, 155, 159, 166, 174, 178, 179, 183, 186, 187, 191, 195, 202, 206, 210, 211, 214, 215, 218, 219
Offset: 1

Views

Author

Artur Jasinski, Jun 24 2010

Keywords

Comments

For numbers a and c, see A172186 and A179017. Numbers b are this sequence.
These numbers c, with distribution a+b=c such that a=(c-1)/2 and b=(c+1)/2, have minimal possible values with function L(a,b,c) = log(c)/log(N[a,b,c]) = log(c)/log((c^2-1)c/4).
There exist no numbers or distributions for which L < log(c)/log((c^2-1)c/4). - Artur Jasinski

Crossrefs

Programs

  • Mathematica
    aa = {}; Do[If[(GCD[x, (x - 1)/2] == 1) && (GCD[x, (x + 1)/2] == 1) && (GCD[(x - 1)/2, (x + 1)/2] == 1), If[SquareFreeQ[(x^2 - 1) x/4], AppendTo[aa, (x + 1)/2]]], {x, 2, 1000}]; aa

Formula

a(n) = A179017(n) - A172186(n). - Hugo Pfoertner, Mar 22 2020
Showing 1-3 of 3 results.