A172171 (1, 9) Pascal Triangle read by horizontal rows. Same as A093644, but mirrored and without the additional row/column (1, 9, 9, 9, 9, ...).
1, 1, 10, 1, 11, 19, 1, 12, 30, 28, 1, 13, 42, 58, 37, 1, 14, 55, 100, 95, 46, 1, 15, 69, 155, 195, 141, 55, 1, 16, 84, 224, 350, 336, 196, 64, 1, 17, 100, 308, 574, 686, 532, 260, 73, 1, 18, 117, 408, 882, 1260, 1218, 792, 333, 82
Offset: 1
Examples
Triangle begins: 1; 1, 10; 1, 11, 19; 1, 12, 30, 28; 1, 13, 42, 58, 37; 1, 14, 55, 100, 95, 46; 1, 15, 69, 155, 195, 141, 55; 1, 16, 84, 224, 350, 336, 196, 64; 1, 17, 100, 308, 574, 686, 532, 260, 73; 1, 18, 117, 408, 882, 1260, 1218, 792, 333, 82; 1, 19, 135, 525, 1290, 2142, 2478, 2010, 1125, 415, 91; 1, 20, 154, 660, 1815, 3432, 4620, 4488, 3135, 1540, 506, 100;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Programs
-
Mathematica
T[n_, k_]:= T[n, k]= If[k<1 || k>n, 0, If[k==1, 1, If[n==2 && k==2, 10, T[n-1, k] + 2*T[n-1, k-1] - T[n-2, k-1] - T[n-2, k-2]]]]; Table[T[n, k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Apr 24 2022 *)
-
SageMath
@CachedFunction def T(n,k): if (k<1 or k>n): return 0 elif (k==1): return 1 elif (n==2 and k==2): return 10 else: return T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) - T(n-2,k-2) flatten([[T(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Apr 24 2022
Formula
Extensions
More terms from Philippe Deléham, Dec 25 2013
Comments