cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172200 Number of ways to place 2 nonattacking amazons (superqueens) on an n X n board.

Original entry on oeis.org

0, 0, 0, 20, 92, 260, 580, 1120, 1960, 3192, 4920, 7260, 10340, 14300, 19292, 25480, 33040, 42160, 53040, 65892, 80940, 98420, 118580, 141680, 167992, 197800, 231400, 269100, 311220, 358092, 410060, 467480, 530720, 600160, 676192, 759220, 849660
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Comments

A amazon (superqueen) moves like a queen and a knight.

References

  • Christian Poisson, Echecs et mathematiques, Rex Multiplex 29/1990, p.829

Crossrefs

Programs

  • Magma
    [(n-1)*(n-2)*(n-3)*(3*n+8)/6: n in [1..50]]; // Vincenzo Librandi, May 27 2013
    
  • Mathematica
    CoefficientList[Series[4x^3(5-2x)/(1-x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, May 27 2013 *)
    LinearRecurrence[{5,-10,10,-5,1},{0,0,0,20,92},40] (* or *) Table[(n-1)(n-2)(n-3)(3n+8)/6,{n,40}] (* Harvey P. Dale, May 16 2021 *)
  • SageMath
    [binomial(n-1,3)*(3*n+8) for n in (1..50)] # G. C. Greubel, Apr 28 2022

Formula

Explicit formula (Christian Poisson, 1990): a(n) = (n - 1)(n - 2)(n - 3)(3n + 8)/6.
G.f.: 4*x^4*(5-2*x)/(1-x)^5. - Colin Barker, Jan 09 2013
E.g.f.: 8 + (1/6)*(-48 +48*x -24*x^2 +8*x^3 +3*x^4)*exp(x). - G. C. Greubel, Apr 28 2022