cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172202 Number of ways to place 3 nonattacking kings on a 3 X n board.

Original entry on oeis.org

0, 0, 8, 34, 105, 248, 490, 858, 1379, 2080, 2988, 4130, 5533, 7224, 9230, 11578, 14295, 17408, 20944, 24930, 29393, 34360, 39858, 45914, 52555, 59808, 67700, 76258, 85509, 95480, 106198, 117690, 129983, 143104, 157080, 171938, 187705
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [(n-2)*(9*n^2-45*n+70)/2: n in [2..50]]; // G. C. Greubel, Apr 29 2022
    
  • Mathematica
    CoefficientList[Series[x^2*(8+2*x+17*x^2)/(1-x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, May 27 2013 *)
    LinearRecurrence[{4,-6,4,-1},{0,0,8,34,105},40] (* Harvey P. Dale, Oct 07 2023 *)
  • SageMath
    [(1/8)*(n-2)*(9*(2*n-5)^2+55) +17*bool(n==1) for n in (1..50)] # G. C. Greubel, Apr 29 2022

Formula

a(n) = (n-2)*(9*n^2 - 45*n + 70)/2, n>=2.
G.f.: x^3*(8+2*x+17*x^2)/(1-x)^4. - Vaclav Kotesovec, Mar 24 2010
E.g.f.: 70 + 17*x + (1/2)*(-140 + 106*x - 36*x^2 + 9*x^3)*exp(x). - G. C. Greubel, Apr 29 2022

Extensions

More terms from Vincenzo Librandi, May 27 2013