cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172216 Smallest k such that sum of digits of prime(n)^k is prime.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 2, 5, 1, 1, 7, 2, 1, 1, 1, 2, 5, 1, 1, 6, 2, 2, 1, 1, 4, 1, 4, 2, 2, 1, 2, 1, 1, 1, 2, 1, 1, 4, 6, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 5, 6, 1, 4, 4, 1, 1, 2, 2, 1, 1, 4, 3, 1, 1, 1, 1, 1, 8, 2, 1, 1, 2, 1, 1, 5, 2, 1, 1, 1, 8, 1, 4, 2, 3, 1, 1, 2, 1, 1, 1, 4, 1, 8, 3, 2, 6, 2, 3, 6, 2, 1, 10, 8, 1
Offset: 1

Views

Author

Klaus Brockhaus, Jan 29 2010

Keywords

Comments

For all n, prime(n)^0 = 1 has nonprime sum of digits 1.
a(n) = 1 iff prime(n) is in A046704, an additive prime. a(n) = 1 iff n is in A075177.

Examples

			prime(1) = 2; 2^1 = 2 has prime sum of digits 2. Hence a(1) = 1.
prime(6) = 13; 13^1 = 13 has nonprime sum of digits 4; 13^2 = 169 has nonprime sum of digits 16; 13^3 = 2197 has prime sum of digits 19. Hence a(6) = 3.
		

Crossrefs

Programs

  • Magma
    S:=[]; for n in [1..105] do j:=1; while not IsPrime(&+Intseq(NthPrime(n)^j)) do j+:=1; end while; Append(~S, j); end for; S;
  • Mathematica
    sdp[n_]:=Module[{k=1},While[!PrimeQ[Total[IntegerDigits[Prime[n]^k]]], k++]; k]; Array[sdp,110] (* Harvey P. Dale, Apr 13 2014 *)