cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A173176 Greater twin primes in A172240.

Original entry on oeis.org

7, 13, 19, 31, 43, 61, 73, 103, 109, 139, 151, 181, 193, 199, 229, 241, 271, 283, 313, 349, 421, 433, 463, 523, 571, 601, 619, 643, 661, 811, 823, 829, 859, 883, 1021, 1033, 1051, 1063, 1093, 1153, 1231, 1279, 1291, 1303, 1321, 1429, 1453, 1483, 1489, 1609, 1621, 1669, 1699, 1723, 1789, 1873, 1879, 1933, 1951, 1999
Offset: 1

Views

Author

Giovanni Teofilatto, Nov 22 2010

Keywords

Comments

For a(n) > 5, first difference of the sequence is divisible by 6. (Conjectured or proved?)
Also for a(n)>5, a(n)-1 is divisible by 6, if a(n)-2 is prime p such that p+1 is divisible by 6.

Crossrefs

Programs

  • Maple
    isA006512 := proc(p) isprime(p) and isprime(p-2) ; end proc:
    isA000430 := proc(p) if isprime(p) then true; else if issqr(p) then isprime(sqrt(p)) ; else false; end if; end if; end proc:
    isA181602 := proc(p) if isprime(p) then if numtheory[bigomega](p-1) =2 and  isA000430(p+2) then true; else false; end if; else false;   end if ; end proc:
    isA181669 := proc(p) isA181602(p) and (p mod 6)= 5 ; end proc:
    isA172240 := proc(n) isprime(n) and not isA181669(n) ; end proc:
    isA173176 := proc(n) isA172240(n) and isA006512(n) ; end proc:
    for n from 2 to 2000 do if isA173176(n) then printf("%d,",n) ; end if; end do:

Formula

A172240 INTERSECT A006512.

Extensions

Corrected by R. J. Mathar, Dec 01 2010

A172487 Lesser of twin primes in A172240.

Original entry on oeis.org

3, 17, 29, 41, 71, 101, 137, 149, 191, 197, 239, 269, 281, 311, 419, 431, 461, 521, 569, 599, 617, 641, 659, 809, 821, 827, 857, 881, 1031, 1049, 1061, 1091, 1151, 1229, 1277, 1289, 1301, 1427, 1451, 1481, 1607, 1667, 1697, 1721, 1787, 1871, 1877, 1931, 1949, 1997
Offset: 1

Views

Author

Giovanni Teofilatto, Nov 21 2010

Keywords

Comments

For a(n) > 3, the first differences of the sequence are divisible by 6. (Is this a conjecture or a theorem?)

Crossrefs

Programs

  • Maple
    isA001359 := proc(p) isprime(p) and isprime(p+2) ; end proc:
    isA000430 := proc(p) if isprime(p) then true; else if issqr(p) then isprime(sqrt(p)) ; else false; end if; end if; end proc:
    isA181669 := proc(p) if isprime(p) and (p mod 6)= 5 then if numtheory[bigomega](p-1) =2 and  isA000430(p+2) then true; else false; end if;else false; end if ; end proc:
    isA172240 := proc(n) isprime(n) and not isA181669(n) ; end proc:
    isA172487 := proc(n) isA172240(n) and isA001359(n) ; end proc:
    for n from 2 to 2000 do if isA172487(n) then printf("%d,",n) ; end if;end do:

Formula

A001359 INTERSECT A172240.

A172260 a(n) = A172240(n) + A172240(n+1).

Original entry on oeis.org

10, 20, 30, 36, 48, 60, 68, 78, 84, 96, 114, 128, 138, 144, 152, 162, 172, 186, 198, 204, 212, 222, 240, 258, 268, 276, 288, 300, 308, 320, 336, 354, 372, 384, 390, 396
Offset: 1

Views

Author

Giovanni Teofilatto, Nov 20 2010

Keywords

Comments

For a(n) > 10, a(n) is divisible by 6 except if A172240(n+1) - A172240(n) is equal to 6.

Crossrefs

Cf. A172240.

A181602 Primes p such that p-1 is a semiprime and p+2 is prime or prime squared.

Original entry on oeis.org

5, 7, 11, 23, 47, 59, 107, 167, 179, 227, 347, 359, 839, 1019, 1319, 1367, 1487, 1619, 2027, 2207, 2999, 3119, 3167, 3467, 4127, 4259, 4547, 4787, 4799, 5099, 5639, 5879, 6659, 6779, 6827, 7559, 8819, 10007, 10607, 11699, 12107, 12539, 14387, 14867
Offset: 1

Views

Author

Giovanni Teofilatto, Nov 01 2010

Keywords

Comments

Except for the second term, a(n)+1 is divisible by 6.
[Proof: a(n)=p is a prime, with p-1=q*r and two primes q<=r by definition. Omitting the special case p=2, p is odd, p+1 is even, so p+1=q*r+2 = 2(1+q*r/2). To show that p+1 is divisible by 6 we show that it is divisible by 2 and by 3; divisibility by 2 has already been shown in the previous sentence. (1+q*r/2 must be integer, so q*r/2 must be integer, so the smaller prime q of the semiprime must be q=2, so p=2*r+1. This shows that p=a(n) are a subset of A005383.) First subcase of the definition is that p+2 is also prime. Then p is a smaller twin prime and by a comment in A003627, p+1 is divisible by 3. Second subcase of the definition is that p+2 = s^2 with s a prime. s can be 3*k+1 or 3*k+2 --p=7 is the exception-- which leads to s^2 = 9*k^2+6*k+1 or s^2=9*k^2+12*k+4, so p+1 = 9*k^2+6*k or 9*k^2+12*k+3, and in both cases p+1 is divisible by 3.]
In consequence, except for the first three terms, first differences a(n+1)-a(n) are also divisible by 6.

Crossrefs

Cf. A001358 (semiprimes), A001248 (squares of primes).

Programs

  • Magma
    [ p: p in PrimesInInterval(3,15000) | &+[ k[2]: k in Factorization(p-1) ] eq 2 and (IsPrime(p+2) or (q^2 eq p+2 and IsPrime(q) where q is Isqrt(p+2))) ]; // Klaus Brockhaus, Nov 03 2010
  • Mathematica
    semiPrimeQ[n_] := Plus @@ Last /@ FactorInteger@n == 2; fQ[n_] := Block[{fi = FactorInteger@n}, Length@ fi == 1 && fi[[1, 2]] == 1 || fi[[1, 2]] == 2]; Select[ Prime@ Range@ 1293, semiPrimeQ[ # - 1] && fQ[ # + 2] &] (* Robert G. Wilson v, Nov 06 2010 *)
    Select[Prime[Range[2000]],PrimeOmega[#-1]==2&&Or@@PrimeQ[{#+2, Sqrt[ #+2]}]&] (* Harvey P. Dale, Aug 12 2012 *)

Extensions

Corrected (29 removed) and extended by Klaus Brockhaus, Robert G. Wilson v and R. J. Mathar, Nov 03 2010

A173641 Primes p such that p^2+4 and p^2-6 are both prime.

Original entry on oeis.org

3, 5, 7, 13, 17, 47, 67, 73, 97, 167, 193, 293, 317, 373, 463, 487, 503, 593, 607, 677, 787, 823, 827, 1087, 1613, 1637, 1987, 2477, 2543, 2687, 2777, 2833, 2903, 2957, 3023, 3583, 3593, 3917, 4093
Offset: 1

Views

Author

Giovanni Teofilatto, Nov 24 2010

Keywords

Comments

p^2+4 and p^2-6 are both primes if a(n)^2+4 is in the sequence A172240 such that A172240(n) - 10 is also prime.

Programs

  • Magma
    [p: p in PrimesUpTo(4100) | IsPrime(p^2+4)and IsPrime(p^2-6)]; // Vincenzo Librandi, Apr 16 2013
  • Mathematica
    Select[Prime[Range[800]], PrimeQ[#^2 + 4]&& PrimeQ[#^2 - 6]&] (* Vincenzo Librandi, Apr 16 2013 *)
  • Sage
    A173641 = list(p for p in primes(10^5) if is_prime(p^2+4) and is_prime(p^2-6))
    

Extensions

Corrected and extended by D. S. McNeil, Nov 24 2010
Showing 1-5 of 5 results.