cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A172334 Floor(n*(sqrt(13)+sqrt(3))).

Original entry on oeis.org

0, 5, 10, 16, 21, 26, 32, 37, 42, 48, 53, 58, 64, 69, 74, 80, 85, 90, 96, 101, 106, 112, 117, 122, 128, 133, 138, 144, 149, 154, 160, 165, 170, 176, 181, 186, 192, 197, 202, 208, 213, 218, 224, 229, 234, 240, 245, 250, 256, 261, 266
Offset: 0

Views

Author

Vincenzo Librandi, Feb 01 2010

Keywords

Comments

Also integer part of n*5.3376020830..., where the constant is the largest root of x^4 -32*x^2 +100.

Crossrefs

Programs

  • Magma
    [ Floor(n*(Sqrt(13)+Sqrt(3))): n in [0..60] ];
  • Mathematica
    With[{c = Sqrt[13] + Sqrt[3]}, Table[Floor[c n], {n, 0, 50}]] (* Harvey P. Dale, Apr 25 2011 *)

A172336 a(n) = floor(n*(sqrt(13)+sqrt(2))).

Original entry on oeis.org

0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 256, 261, 266, 271, 276
Offset: 0

Views

Author

Vincenzo Librandi, Feb 01 2010

Keywords

Comments

a(n) = integer part of n*(sqrt(13)+sqrt(2)), where the constant is the largest root of x^4 -30*x^2 +121.

Crossrefs

Programs

  • Magma
    [Floor(n*(Sqrt(13)+Sqrt(2))): n in [0..60]];
    
  • Mathematica
    With[{c = Sqrt[13] + Sqrt[2]}, Floor[c Range[0, 70]]] (* Vincenzo Librandi, Aug 01 2013 *)
  • PARI
    for(n=0,50, print1(floor(n*(sqrt(13)+sqrt(2))), ", ")) \\ G. C. Greubel, Jul 05 2017

A172338 a(n) = floor(n*(sqrt(5)+sqrt(3))).

Original entry on oeis.org

0, 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63, 67, 71, 75, 79, 83, 87, 91, 95, 99, 103, 107, 111, 115, 119, 123, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 178, 182, 186, 190, 194, 198, 202, 206, 210, 214, 218
Offset: 0

Views

Author

Vincenzo Librandi, Feb 01 2010

Keywords

Comments

sqrt(5)+sqrt(3) = 3.96811878506867... is the largest root of x^4 - 16*x^2 + 4.

Crossrefs

Programs

  • Magma
    [Floor(n*Sqrt(5)+Sqrt(3)): n in [0..60] ];
    
  • Mathematica
    With[{c = Sqrt[5] + Sqrt[3]}, Floor[c Range[0,60]]] (* Harvey P. Dale, Apr 10 2012 *)
  • PARI
    a(n)=sqrtint(sqrtint(60*n^4)+8*n^2) \\ Charles R Greathouse IV, Jan 24 2022

A172337 Floor(n*(sqrt(11)+sqrt(7))).

Original entry on oeis.org

0, 5, 11, 17, 23, 29, 35, 41, 47, 53, 59, 65, 71, 77, 83, 89, 95, 101, 107, 113, 119, 125, 131, 137, 143, 149, 155, 160, 166, 172, 178, 184, 190, 196, 202, 208, 214, 220, 226, 232, 238, 244, 250, 256, 262, 268, 274, 280, 286, 292, 298, 304, 310, 316, 321, 327
Offset: 0

Views

Author

Vincenzo Librandi, Feb 01 2010

Keywords

Comments

a(n) = integer part of n*(sqrt(11)+sqrt(7)), where the constant is the largest root of x^4 -36*x^2 +16.

Crossrefs

Programs

  • Magma
    [ Floor(n*(Sqrt(11)+Sqrt(7))): n in [0..60] ];
  • Mathematica
    With[{c = Sqrt[11] + Sqrt[7]}, Floor[c Range[0, 70]]] (* Vincenzo Librandi, Aug 01 2013 *)

A172324 a(n) = floor(n*(sqrt(7)+sqrt(5))).

Original entry on oeis.org

0, 4, 9, 14, 19, 24, 29, 34, 39, 43, 48, 53, 58, 63, 68, 73, 78, 82, 87, 92, 97, 102, 107, 112, 117, 122, 126, 131, 136, 141, 146, 151, 156, 161, 165, 170, 175, 180, 185, 190, 195, 200, 205, 209, 214, 219, 224, 229, 234, 239, 244, 248, 253, 258, 263, 268, 273
Offset: 0

Views

Author

Vincenzo Librandi, Feb 01 2010

Keywords

Comments

a(n) = integer part of n*(sqrt(7)+sqrt(5)), where the constant is the largest root of x^4 -24*x^2 +4.

Crossrefs

Programs

  • Magma
    [Floor(n*(Sqrt(7)+Sqrt(5))): n in [0..60]];
  • Mathematica
    With[{c = Sqrt[7] + Sqrt[5]}, Floor[c Range[0, 70]]] (* Vincenzo Librandi, Aug 01 2013 *)

A172325 Floor(n*(sqrt(7)+sqrt(3))).

Original entry on oeis.org

0, 4, 8, 13, 17, 21, 26, 30, 35, 39, 43, 48, 52, 56, 61, 65, 70, 74, 78, 83, 87, 91, 96, 100, 105, 109, 113, 118, 122, 126, 131, 135, 140, 144, 148, 153, 157, 161, 166, 170, 175, 179, 183, 188, 192, 197, 201, 205, 210, 214, 218
Offset: 0

Views

Author

Vincenzo Librandi, Feb 01 2010

Keywords

Comments

Also integer part of n*4.3778021186..., where the constant is the largest root of x^4 -20*x^2 +16.

Crossrefs

Programs

  • Magma
    [Floor(n*(Sqrt(7)+Sqrt(3))): n in [0..60]];
  • Mathematica
    With[{c = Sqrt[7] + Sqrt[3]}, Floor[c Range[0, 70]]] (* Vincenzo Librandi, Aug 01 2013 *)

A172326 a(n) = floor(n*(sqrt(7) + sqrt(2))).

Original entry on oeis.org

0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 178, 182, 186, 190, 194, 198, 202
Offset: 0

Views

Author

Vincenzo Librandi, Feb 01 2010

Keywords

Comments

Also integer part of n*4.0599648734..., where the constant is the largest root of x^4 - 18*x^2 + 25.

Crossrefs

Programs

  • Magma
    [Floor(n*(Sqrt(7)+Sqrt(2))): n in [0..60]];
    
  • Maple
    a:=n->floor(n*(sqrt(7)+sqrt(2))): seq(a(n),n=0..60); # Muniru A Asiru, Sep 28 2018
  • Mathematica
    With[{c = Sqrt[7] + Sqrt[2]}, Floor[c Range[0, 60]]]  (* Harvey P. Dale, Mar 23 2011 *)
  • PARI
    vector(60, n, n--; floor(n*(sqrt(7)+sqrt(2)))) \\ G. C. Greubel, Sep 28 2018

A172327 Floor(n*(sqrt(11)+sqrt(5))).

Original entry on oeis.org

0, 5, 11, 16, 22, 27, 33, 38, 44, 49, 55, 61, 66, 72, 77, 83, 88, 94, 99, 105, 111, 116, 122, 127, 133, 138, 144, 149, 155, 161, 166, 172, 177, 183, 188, 194, 199, 205, 211, 216, 222, 227, 233, 238, 244, 249, 255, 260, 266, 272, 277
Offset: 0

Views

Author

Vincenzo Librandi, Feb 01 2010

Keywords

Comments

Also integer part of n*5.5526927678..., where the constant is the largest root of x^4 -32*x^2 +36.

Crossrefs

Programs

  • Magma
    [Floor(n*(Sqrt(11)+Sqrt(5))): n in [0..60]];
  • Mathematica
    With[{c = Sqrt[11] + Sqrt[5]}, Floor[c Range[0, 70]]] (* Vincenzo Librandi, Aug 01 2013 *)

A172328 a(n) = floor(n*(sqrt(11)+sqrt(3))).

Original entry on oeis.org

0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 106, 111, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 206, 212, 217, 222, 227, 232, 237, 242, 247, 252
Offset: 0

Views

Author

Vincenzo Librandi, Feb 01 2010

Keywords

Comments

Also integer part of n*5.0486755979..., where the constant is the largest root of x^4 -28*x^2 +64.

Crossrefs

Programs

  • Magma
    [Floor(n*(Sqrt(11)+Sqrt(3))): n in [0..60]];
  • Mathematica
    With[{c = Sqrt[11] + Sqrt[3]}, Floor[c Range[0, 70]]] (* Vincenzo Librandi, Aug 01 2013 *)

A172329 a(n) = floor(n*(sqrt(11) + sqrt(2))).

Original entry on oeis.org

0, 4, 9, 14, 18, 23, 28, 33, 37, 42, 47, 52, 56, 61, 66, 70, 75, 80, 85, 89, 94, 99, 104, 108, 113, 118, 123, 127, 132, 137, 141, 146, 151, 156, 160, 165, 170, 175, 179, 184, 189, 193, 198, 203, 208, 212, 217, 222, 227, 231, 236
Offset: 0

Views

Author

Vincenzo Librandi, Feb 01 2010

Keywords

Comments

Also integer part of n*4.7308383527..., where the constant is the largest root of x^4 - 26*x^2 + 81.

Crossrefs

Programs

  • Magma
    [Floor(n*(Sqrt(11)+Sqrt(2))): n in [0..60]];
    
  • Maple
    a:=n->floor(n*(sqrt(11)+sqrt(2))): seq(a(n),n=0..60); # Muniru A Asiru, Sep 28 2018
  • Mathematica
    With[{c=Sqrt[11]+Sqrt[2]},Table[Floor[c n], {n,0,50}]]  (* Harvey P. Dale, Mar 12 2011 *)
  • PARI
    vector(60, n, n--; floor(n*(sqrt(11)+sqrt(2)))) \\ G. C. Greubel, Sep 28 2018
Showing 1-10 of 14 results. Next