cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172447 a(n) = (-1 + 5*2^(2*n + 1) - 3*n)/9.

Original entry on oeis.org

1, 4, 17, 70, 283, 1136, 4549, 18202, 72815, 291268, 1165081, 4660334, 18641347, 74565400, 298261613, 1193046466, 4772185879, 19088743532, 76354974145, 305419896598, 1221679586411, 4886718345664, 19546873382677, 78187493530730, 312749974122943, 1250999896491796
Offset: 0

Views

Author

Paul Curtz, Feb 03 2010

Keywords

Comments

a(n) mod 10 gives the 10-periodic sequence 1, 4, 7, 0, 3, 6, 9, 2, 5, 8 (and repeat, A131579 shifted, A144468 reversed) which contains all ten digits, that has a "palindromic" symmetry: 1 + 8 = 4 + 5 = 7 + 2 = 0 + 9 = 3 + 6 = 9.
The inverse binomial transform gives 1, 3, 10, 30, 90, ... (A062107 shifted). - R. J. Mathar, Feb 11 2010

Crossrefs

Cf. A072197 (first differences).

Programs

  • Magma
    [(-1+5*2^(2*n+1)-3*n)/9: n in [0..30]]; // Vincenzo Librandi, Aug 05 2011
    
  • Mathematica
    LinearRecurrence[{6, -9, 4}, {1, 4, 17}, 30] (* Harvey P. Dale, Mar 25 2016 *)
    ((-1 + 5 2^(2# + 1) - 3#)/9  &) /@ Range[0, 29] (* Alonso del Arte, Apr 25 2020 *)
  • PARI
    a(n)=(10*4^n-3*n)\9 \\ Charles R Greathouse IV, Jul 21 2015
    
  • Scala
    val powerOf2: LazyList[BigInt] = LazyList.iterate(1: BigInt)(_ * 2)
    (0 to 29).map(n => (-1 + 5 * powerOf2(2 * n + 1) - 3 * n)/9) // Alonso del Arte, Apr 25 2020

Formula

a(n) = 6*a(n - 1) - 9*a(n - 2) + 4*a(n - 3).
a(n + 1) - 4*a(n) = n.
a(n) = A172416(2n + 1).
G.f.: (1 - 2*x + 2*x^2)/((1 - 4*x) * (x - 1)^2). - R. J. Mathar, Feb 11 2010
E.g.f.: (10*exp(4*x) - (1 + 3*x)*exp(x))/9. - G. C. Greubel, Nov 02 2018

Extensions

Definition replaced by closed formula by R. J. Mathar, Feb 11 2010