A172454 Primes p such that (p, p+2, p+6, p+12) is a prime quadruple.
5, 11, 17, 41, 101, 227, 347, 641, 1091, 1277, 1427, 1481, 1487, 1607, 2687, 3527, 3917, 4001, 4127, 4637, 4787, 4931, 8231, 9461, 10331, 11777, 12107, 13901, 14627, 16061, 19421, 20747, 21011, 21557, 22271, 23741, 25577, 26681, 26711, 27737
Offset: 1
Keywords
Examples
The first two terms correspond to the quadruples (5,7,11,17) and (11,13,17,23).
References
- R. K. Guy, Unsolved Problems in Number Theory, E30.
- P. A. MacMahon, The prime numbers of measurement on a scale, Proc. Camb. Phil. Soc. 21 (1923), 651-654; reprinted in Coll. Papers I, pp. 797-800.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- G. E. Andrews, MacMahon's prime numbers of measurement, Amer. Math. Monthly, 82 (1975), 922-923.
- R. L. Graham and C. B. A. Peck, Problem E1910, Amer. Math. Monthly, 75 (1968), 80-81.
- Eric Weisstein's World of Mathematics, Prime Triplet.
Programs
-
Maple
for n from 1 by 2 to 110000 do; if isprime(n) and isprime(n+2) and isprime(n+6) and isprime(n+12) then print(n) else fi;od;
-
Mathematica
Select[Prime[Range[3100]],And@@PrimeQ[{#+2,#+6,#+12}]&] (* Harvey P. Dale, Jul 23 2011 *)
-
PARI
forprime(p=2,1e4,if(isprime(p+2)&&isprime(p+6)&&isprime(p+12), print1(p", "))) \\ Charles R Greathouse IV, Mar 04 2012
Comments