cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172454 Primes p such that (p, p+2, p+6, p+12) is a prime quadruple.

Original entry on oeis.org

5, 11, 17, 41, 101, 227, 347, 641, 1091, 1277, 1427, 1481, 1487, 1607, 2687, 3527, 3917, 4001, 4127, 4637, 4787, 4931, 8231, 9461, 10331, 11777, 12107, 13901, 14627, 16061, 19421, 20747, 21011, 21557, 22271, 23741, 25577, 26681, 26711, 27737
Offset: 1

Views

Author

Michel Lagneau, Feb 03 2010

Keywords

Comments

The four primes do not have to be consecutive. - Harvey P. Dale, Jul 23 2011

Examples

			The first two terms correspond to the quadruples (5,7,11,17) and (11,13,17,23).
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, E30.
  • P. A. MacMahon, The prime numbers of measurement on a scale, Proc. Camb. Phil. Soc. 21 (1923), 651-654; reprinted in Coll. Papers I, pp. 797-800.

Crossrefs

Programs

  • Maple
    for n from 1 by 2 to 110000 do; if isprime(n) and isprime(n+2) and isprime(n+6) and isprime(n+12) then print(n) else fi;od;
  • Mathematica
    Select[Prime[Range[3100]],And@@PrimeQ[{#+2,#+6,#+12}]&] (* Harvey P. Dale, Jul 23 2011 *)
  • PARI
    forprime(p=2,1e4,if(isprime(p+2)&&isprime(p+6)&&isprime(p+12), print1(p", "))) \\ Charles R Greathouse IV, Mar 04 2012