cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A191456 Primes p such that the polynomial x^2+x+p generates only primes for x=1..9.

Original entry on oeis.org

11, 17, 41, 844427, 51448361, 86966771, 122983031, 180078317, 960959381, 1278189947, 1761702947, 1829187287, 2426256797, 2911675511, 3013107257, 4778888351, 5221343711
Offset: 1

Views

Author

Zak Seidov, Jun 02 2011

Keywords

Crossrefs

Generates primes for x=1..k: A001359 (1), A022004 (2), A172454 (3), A187057 (4), A187058 (5), A144051 (6), A187060 (7), A190800 (8), this sequence (9), A191457 (10), A191458 (11), A253592 (12), A253605 (13). Each is by definition a subsequence of preceding sequences.
Subsequence such that x=10 gives a composite number: A211238.

Programs

A172456 Primes p such that (p, p+2, p+6, p+12, p+14, p+20) is a prime sextuple.

Original entry on oeis.org

17, 1277, 1607, 3527, 4637, 71327, 97367, 113147, 191447, 290657, 312197, 416387, 418337, 421697, 450797, 566537, 795647, 886967, 922067, 1090877, 1179317, 1300127, 1464257, 1632467, 1749257, 1866857, 1901357, 2073347, 2322107
Offset: 1

Views

Author

Michel Lagneau, Feb 03 2010

Keywords

Comments

The last digit of each of these prime numbers is 7.
Subsequence of A078946.
The primes are always consecutive: The few ways of inserting other primes are: (p,p+2,p+4)... [impossible since one of these would be a multiple of 3]; (p,p+2,p+6),(p+8),(p+12),(p+14) [impossible since one of these would be a multiple of 5]; (p,p+2,p+6),(p+10) [impossible since one of these would be a multiple of 3]; (p,p+2,p+6),(p+12),(p+14),(p+16) [impossible since one of these would be a multiple of 3]; (p,p+2,p+6),(p+12),(p+14),(p+18) [impossible since one of these would be a multiple of 5]. - R. J. Mathar, Jun 15 2013

Examples

			The first two terms correspond to the sextuples (17,19,23,29,31,37) and (1277,1279,1283,1289,1291,1297).
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, E30.

Crossrefs

Initial members of prime quadruples (p, p+2, p+6, p+12): A172454.

Programs

  • Maple
    for n from 1 by 2 to 400000 do; if isprime(n) and isprime(n+2) and isprime(n+6) and isprime(n+12) and isprime(n + 14) and isprime(n+20) then print(n) else fi;od;
  • Mathematica
    Select[Prime[Range[171000]],And@@PrimeQ[{#+2,#+6,#+12,#+14,#+20}]&] (* Harvey P. Dale, Jul 23 2011 *)
    Select[Prime[Range[171000]],AllTrue[#+{2,6,12,14,20},PrimeQ]&] (* or *) Select[ Partition[Prime[Range[171000]],6,1],Differences[#]=={2,4,6,2,6}&][[All,1]] (* Harvey P. Dale, Sep 04 2022 *)

A291635 Number of ways to write n as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that p = x + 2*y + 5*z, p - 2, p + 4 and p + 10 are all prime.

Original entry on oeis.org

0, 1, 1, 0, 1, 3, 1, 0, 1, 2, 2, 0, 3, 7, 3, 0, 4, 4, 1, 0, 4, 7, 3, 0, 3, 5, 2, 0, 4, 6, 2, 0, 2, 3, 3, 0, 4, 8, 3, 0, 5, 8, 2, 0, 2, 5, 2, 0, 5, 8, 4, 0, 4, 5, 2, 0, 5, 6, 4, 0, 1, 8, 5, 0, 3, 9, 3, 0, 6, 8, 3, 0, 5, 13, 5, 0, 9, 9, 2, 0, 4, 6, 6, 0, 7, 11, 4, 0, 8, 10, 5, 0, 2, 11, 5, 0, 3, 10, 4, 0
Offset: 1

Views

Author

Zhi-Wei Sun, Aug 28 2017

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1 not divisible by 4.
This is stronger than the conjecture in A291624. Obviously, it implies that there are infinitely many prime quadruples (p-2, p, p+4, p+10).
We have verified that a(n) > 0 for any integer 1 < n < 10^7 not divisible by 4.

Examples

			a(61) = 1 since 61 = 4^2 + 0^2 + 3^2 + 6^2 with 4 + 2*0 + 5*3 = 19, 19 - 2 = 17, 19 + 4 = 23 and 19 + 10 = 29 all prime.
a(253) = 1 since 253 = 12^2 + 8^2 + 3^2 + 6^2 with 12 + 2*8 + 5*3 = 43, 43 - 2 = 41, 43 + 4 = 47 and 43 + 10 = 53 all prime.
a(725) = 1 since 725 = 7^2 + 0^2 + 0^2 + 26^2 with 7 + 2*0 + 5*0 = 7, 7 - 2 = 5, 7 + 4 = 11 and 7 + 10 = 17 all prime.
a(1511) = 1 since 1511 = 18^2 + 15^2 + 11^2 + 29^2 with 18 + 2*15 + 5*11 = 103, 103 - 2 = 101, 103 + 4 = 107 and 103 + 10 = 113 all prime.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    PQ[p_]:=PQ[p]=PrimeQ[p]&&PrimeQ[p-2]&&PrimeQ[p+4]&&PrimeQ[p+10]
    Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&PQ[x+2y+5z],r=r+1],{x,0,Sqrt[n]},{y,0,Sqrt[n-x^2]},{z,0,Sqrt[n-x^2-y^2]}];Print[n," ",r],{n,1,100}]

A341267 Gaps between first elements of quadruple primes of the form {p, p+2, p+6, p+12}.

Original entry on oeis.org

6, 6, 24, 60, 126, 120, 294, 450, 186, 150, 54, 6, 120, 1080, 840, 390, 84, 126, 510, 150, 144, 3300, 1230, 870, 1446, 330, 1794, 726, 1434, 3360, 1326, 264, 546, 714, 1470, 1836, 1104, 30, 1026, 204, 336, 744, 2226, 810, 240, 1050, 270, 1914, 60, 876, 1980
Offset: 1

Views

Author

James S. DeArmon, Feb 07 2021

Keywords

Comments

Primes in the quadruple need not be sequential primes.

Examples

			The first 6 quadruples are (5,7,11,17), (11,13,17,23), (17,19,23,29), (41,43,47,53), (101,103,107,113), (227,229,233,239), so the first 5 terms of the sequence are 11-5=6, 17-11=6, 41-17=24, 101-41=60, 227-101=126.
		

Crossrefs

Cf. A172454.

Programs

  • Maple
    b:= proc(n) option remember; local p; p:= `if`(n=1, 1, b(n-1));
          do p:= nextprime(p);
             if andmap(isprime, [p+2, p+6, p+12]) then return p fi
          od
        end:
    a:= n-> b(n+1)-b(n):
    seq(a(n), n=1..65);  # Alois P. Heinz, Feb 14 2021
  • Mathematica
    Differences[Select[Prime[Range[5000]],AllTrue[#+{2,6,12},PrimeQ]&]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 21 2021 *)
  • Perl
    # See DeArmon link.

Formula

a(n) = A172454(n+1) - A172454(n).

A385035 Primes p such that p + 8, p + 14, p + 18 and p + 20 are also primes.

Original entry on oeis.org

23, 53, 89, 263, 599, 1283, 1979, 3449, 5399, 5639, 11813, 14543, 41213, 42443, 44249, 47129, 55799, 57773, 65699, 74699, 75983, 79613, 84299, 87539, 88643, 88793, 88799, 113153, 115763, 126473, 143813, 148913, 150203, 160073, 163973, 167099, 176489, 178799, 178889, 209249
Offset: 1

Views

Author

Alexander Yutkin, Jun 15 2025

Keywords

Examples

			p=23: 23+8=31, 23+14=37, 23+18=41, 23+20=43 —> prime quintuple: (23, 31, 37, 41, 43).
		

Crossrefs

Cf. A000040.
Cf. A172454 [2, 4, 6], A078855 [6, 4, 2], A187057 [2, 4, 6, 8].

Programs

  • Magma
    [p: p in PrimesUpTo(300000) | IsPrime(p+8) and IsPrime(p+14) and IsPrime(p+18) and IsPrime(p+20)]; // Vincenzo Librandi, Jul 04 2025
  • Maple
    q:= p-> andmap(i-> isprime(p+i), [0, 8, 14, 18, 20]):
    select(q, [5+6*i$i=0..35000])[];  # Alois P. Heinz, Jun 16 2025
  • Mathematica
    Select[Prime[Range[20000]], AllTrue[#+{8, 14, 18,20}, PrimeQ]&] (* Stefano Spezia, Jun 18 2025 *)
Showing 1-5 of 5 results.