cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A191458 Primes p such that the polynomial x^2+x+p generates only primes for x=1..11.

Original entry on oeis.org

17, 41, 1761702947, 8776320587, 10102729577, 11085833111, 177558051107, 273373448057, 473787509537, 557149355507, 715464238661, 1359854730821, 2131528031441, 2170341748697, 2236159108277, 2308235320997, 2751203698151, 3247566894821, 3288002848511, 3424305123047
Offset: 1

Views

Author

Zak Seidov, Jun 02 2011

Keywords

Comments

Subsequence of A191457.
The sequence is infinite under Dickson's conjecture. - Charles R Greathouse IV, Oct 11 2011

Crossrefs

Programs

Extensions

a(12)-a(20) from Charles R Greathouse IV, Oct 17 2011

A191457 Primes p such that the polynomial x^2+x+p generates only primes for x=1..10.

Original entry on oeis.org

17, 41, 180078317, 1278189947, 1761702947, 1829187287, 5862143447, 6369321857, 7226006861, 8776320587, 10102729577, 11085833111, 12412643261, 50626299797, 53039299211, 72355485857, 74621287901, 76233413141, 81948881447, 115826556611, 129077263697
Offset: 1

Views

Author

Zak Seidov, Jun 02 2011

Keywords

Comments

Dickson's conjecture implies that this sequence is infinite. [Charles R Greathouse IV, Jun 03 2011]

Crossrefs

Subsequence of A191456. Cf. A187060, A190800.

Programs

  • PARI
    isokp(p) = {for (n=1, 10, if (! isprime(subst(x^2+x+p, x, n)), return (0));); 1;}
    lista(nn) = {forprime (p=1, nn, if (isokp(p), print1(p, ", ")); ); } \\ Michel Marcus, Jan 05 2015

A160548 Primes of the form k^2 + k + 844427.

Original entry on oeis.org

844427, 844429, 844433, 844439, 844447, 844457, 844469, 844483, 844499, 844517, 844609, 844733, 844769, 844847, 845027, 845129, 845183, 845357, 845833, 845909, 845987, 846067, 846149, 846233, 846407, 846589, 846779, 846877, 846977, 847079, 847507, 847967, 848087
Offset: 1

Views

Author

Arkadiusz Wesolowski, May 18 2009

Keywords

Comments

844427 is the fourth term of A190800 and of A191456. - Arkadiusz Wesolowski, Jun 25 2011

Crossrefs

Programs

  • Magma
    [n^2+n+844427 : n in [0..60] | IsPrime(n^2+n+844427)]; // Bruno Berselli, Feb 23 2011
    
  • Mathematica
    Select[Table[n^2 + n + 844427, {n, 0, 60}], PrimeQ] (* Arkadiusz Wesolowski, Mar 04 2011 *)
  • PARI
    for(n=0, 60, if(isprime(x=(n^2+n+844427)), print1(x, ", "))); \\ Arkadiusz Wesolowski, Mar 02 2011
    
  • PARI
    select(isprime, vector(1000, n, n^2+n+844427)) \\ Charles R Greathouse IV, Feb 23 2011

A273595 Least q > 0 such that min { x >= 0 | q + prime(n)*x + x^2 is composite } is a (local) maximum, cf. A273756 & A273770.

Original entry on oeis.org

43, 47, 53, 71, 83, 113, 131, 173, 251, 281, 383, 461, 503, 593, 743, 73361, 73421, 3071069, 15949847, 76553693, 2204597, 1842719, 246407807, 986578883, 73975907, 4069235123, 1244414939, 25213427, 656856899, 30641069183, 8221946477, 41730358853, 10066886927, 285340609997, 6232338461
Offset: 2

Views

Author

M. F. Hasler, May 26 2016

Keywords

Comments

This is a subsequence of A273756 which considers all odd numbers (2n+1) instead of only prime(n) as coefficients of the linear term.
All terms are necessarily prime, since this is necessary and sufficient to get a prime for x = 0.
The respective minima (= number of consecutive primes for x = 0, 1, 2, ...) are given in A273597.
It has been pointed out by Don Reble that the prime k-tuple conjecture predicts infinitely long sequences of primes of the given form, therefore we consider the "local" maxima, for q below some appropriate (large) limit: see sequences A273756 & A273770 for further details. - M. F. Hasler, Feb 17 2020

Crossrefs

Cf. also A002837 (n such that n^2-n+41 is prime), A007634 (n such that n^2+n+41 is composite), A005846 (primes of form n^2+n+41), A097823, A144051, A187057 .. A187060, A190800, A191456 ff.

Programs

Formula

a(n) = A273756((prime(n) - 1)/2). - M. F. Hasler, Feb 17 2020

Extensions

Edited and extended using A273756(0..100) due to Don Reble, by M. F. Hasler, Feb 17 2020

A273756 Least p for which min { x >= 0 | p + (2n+1)*x + x^2 is composite } reaches the (local) maximum given in A273770.

Original entry on oeis.org

41, 43, 47, 53, 61, 71, 83, 97, 113, 131, 151, 173, 197, 223, 251, 281, 313, 347, 383, 421, 461, 503, 547, 593, 641, 691, 743, 797, 73303, 73361, 73421, 73483, 3443897, 3071069, 3071137, 15949847, 76553693, 365462323, 365462399, 2204597, 9721, 1842719, 246407633, 246407719, 246407807, 246407897, 246407989
Offset: 0

Views

Author

M. F. Hasler, May 26 2016

Keywords

Comments

All terms are prime, since this is necessary and sufficient to get a prime for x = 0.
The values given in A273770 are the number of consecutive primes obtained for x = 0, 1, 2, ....
Sequence A273595 is the subsequence of terms for which 2n+1 is prime.
For even coefficients of the linear term, the answer would always be q=2, the only choice that yields a prime for x=0 and also for x=1 if (coefficient of the linear term)+3 is prime.
The initial term a(n=0) = 41 corresponds to Euler's famous prime-generating polynomial 41+x+x^2. Some subsequent terms are equal to the primes this polynomial takes for x=1,2,3,.... This stems from the fact that adding 2 to the coefficient of the linear term is equivalent to shifting the x-variable by 1. Since here we require x >= 0, we find a reduced subset of the previous sequence of primes, missing the first one, starting with q equal to the second one. (It is known that there is no better prime-generating polynomial of this form than Euler's, see the MathWorld page and A014556. "Better" means a larger p producing p-1 primes in a row. However, the prime k-tuple conjecture suggests that there should be arbitrarily long runs of primes of this form (for much larger p), i.e., longer than 41, but certainly much less than the respective p. Therefore we speak of local maxima.)

Crossrefs

Cf. also A002837 (n such that n^2-n+41 is prime), A007634 (n such that n^2+n+41 is composite), A005846 (primes of form n^2+n+41), A097823, A144051, A187057 ... A187060, A190800, A191456 ff.
The first line of data coincides with that of A202018, A107448, A155884 (and also A140755, A142719, except for some initial terms), which are all related.

Programs

  • PARI
    A273756(n,p=2*n+1,L=10^(5+n\10),m=0,Q)={forprime(q=1,L, for(x=1,oo, ispseudoprime(q+p*x+x^2)&& next; x>m&& [Q=q,m=x]; break));Q}

Extensions

Edited, following a remark by Don Reble, by M. F. Hasler, Jan 23 2018
a(27) corrected and more terms from Don Reble, Feb 15 2018

A273770 Max { min { x >= 0 | p + (2*n+1)*x + x^2 is composite }, p < 10^(5+n/10) }.

Original entry on oeis.org

40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 13, 12, 11, 10, 11, 12, 11, 12, 12, 13, 12, 12, 13, 16, 17, 16, 15, 14, 13, 13, 12, 11, 12, 13, 13, 14, 13, 13, 13, 12, 13, 14, 13, 14, 15, 14, 14, 13, 14, 14, 13
Offset: 0

Views

Author

M. F. Hasler, May 26 2016

Keywords

Comments

The values for p are given in A273756 which is the main entry, see there for further information and (cross)references.
From the initial values, the sequence seems strictly decreasing, with a(n) = 40-n, however, this property does not persist beyond a(27) = 13.
The upper limit on p ensures that we have a well-defined sequence: The prime k-tuple conjecture predicts existence of arbitrarily long sequences of primes of the given form, and thus unbounded minimal value of x. However, the corresponding prime tuples are expected to appear for much larger values of p. The given limit should be understood as "below the first/next such prime tuple", and in general the values a(n) should not change if that limit would be increased by some orders of magnitude. There might be counterexamples, which would be interesting. The given limit was chosen for lack of a more natural expression, and is relatively small. It could be replaced by a more appropriate function of n if a proposal is available, which should not affect the values given so far. - M. F. Hasler, Jan 22 2018, edited Feb 17 2020

Crossrefs

Programs

  • PARI
    {A273770(n, p=2*n+1, L=10^(5+n/10), m)=forprime(q=1,L, for(x=1,oo, ispseudoprime(q+p*x+x^2) || (x>m && !m=x) || break));m}

Formula

a(n) = 40 - n for 0 <= n <= 27.

Extensions

Corrected and extended by Don Reble, Feb 15 2018

A247949 Primes p such that the polynomial k^4 + k^3 + k^2 + k + p yields only primes for k = 0...5.

Original entry on oeis.org

7, 43, 79, 457, 877, 967, 1093, 2437, 2683, 3187, 5077, 5923, 7933, 8233, 11923, 12889, 15787, 17389, 19993, 31543, 41113, 41617, 42457, 71359, 77863, 80683, 91393, 101719, 102643, 105967, 107347, 120163, 129733, 137593, 151783, 170263, 175723, 197569, 210127
Offset: 1

Views

Author

K. D. Bajpai, Jan 11 2015

Keywords

Comments

All terms == 1 mod 6. - Robert Israel, Jan 11 2015

Examples

			a(1) = 7:
0^4 + 0^3 + 0^2 + 0 + 7 = 7;
1^4 + 1^3 + 1^2 + 1 + 7 = 11;
2^4 + 2^3 + 2^2 + 2 + 7 = 37;
3^4 + 3^3 + 3^2 + 3 + 7 = 127;
4^4 + 4^3 + 4^2 + 4 + 7 = 347;
5^4 + 5^3 + 5^2 + 5 + 7 = 787;
all six are primes.
		

Crossrefs

Programs

  • Maple
    select(p -> andmap(isprime, [p, p+4, p+30, p+120, p+340, p+780]), [seq(6*i+1, i=1..10^5)]); # Robert Israel, Jan 11 2015
  • Mathematica
    Select[f=k^4 + k^3 + k^2 + k; k = {0, 1, 2, 3, 4, 5}; Prime[Range[2000000]], And @@ PrimeQ[#+f] &]
    Select[Prime[Range[20000]],AllTrue[#+{4,30,120,340,780},PrimeQ]&] (* Harvey P. Dale, Dec 24 2023 *)
  • PARI
    forprime(p=1, 500000, if( isprime(p+0)& isprime(p+4)& isprime(p+30)& isprime(p+120)& isprime(p+340)& isprime(p+780), print1(p,", ")))

A247966 Primes p such that the polynomial k^4 + k^3 + k^2 + k + p yields only primes for k = 0...6.

Original entry on oeis.org

43, 457, 967, 1093, 5923, 8233, 11923, 15787, 41113, 80683, 151783, 210127, 213943, 294919, 392737, 430879, 495559, 524827, 537007, 572629, 584557, 711727, 730633, 731593, 1097293, 1123879, 1138363, 1149163, 1396207, 1601503, 1739557, 1824139, 2198407, 2223853
Offset: 1

Views

Author

K. D. Bajpai, Jan 11 2015

Keywords

Examples

			a(1) = 43:
0^4 + 0^3 + 0^2 + 0 + 43 = 43;
1^4 + 1^3 + 1^2 + 1 + 43 = 47;
2^4 + 2^3 + 2^2 + 2 + 43 = 73;
3^4 + 3^3 + 3^2 + 3 + 43 = 163;
4^4 + 4^3 + 4^2 + 4 + 43 = 383;
5^4 + 5^3 + 5^2 + 5 + 43 = 823;
6^4 + 6^3 + 6^2 + 6 + 43 = 1597;
all seven are primes.
		

Crossrefs

Programs

  • Mathematica
    Select[f=k^4 + k^3 + k^2 + k; k = {0, 1, 2, 3, 4, 5, 6}; Prime[Range[2000000]], And @@ PrimeQ[#+f] &]
    Select[Prime[Range[200000]],AllTrue[#+{4,30,120,340,780,1554},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 10 2017 *)
  • PARI
    forprime(p=1, 1e6, if( isprime(p+0)& isprime(p+4)& isprime(p+30)& isprime(p+120)& isprime(p+340)& isprime(p+780)&  isprime(p+1554), print1(p,", ")))

A248206 Primes p such that the polynomial k^4 + k^3 + k^2 + k + p yields only primes for k = 0...7.

Original entry on oeis.org

43, 457, 967, 11923, 15787, 41113, 213943, 294919, 392737, 430879, 524827, 572629, 730633, 1097293, 1149163, 2349313, 2738779, 3316147, 3666007, 5248153, 5396617, 5477089, 7960009, 9949627, 10048117, 11260237, 11613289, 15281023, 16153279, 17250367, 18733807
Offset: 1

Views

Author

K. D. Bajpai, Jan 11 2015

Keywords

Examples

			a(1) = 43:
0^4 + 0^3 + 0^2 + 0 + 43 = 43;
1^4 + 1^3 + 1^2 + 1 + 43 = 47;
2^4 + 2^3 + 2^2 + 2 + 43 = 73;
3^4 + 3^3 + 3^2 + 3 + 43 = 163;
4^4 + 4^3 + 4^2 + 4 + 43 = 383;
5^4 + 5^3 + 5^2 + 5 + 43 = 823;
6^4 + 6^3 + 6^2 + 6 + 43 = 1597;
7^4 + 7^3 + 7^2 + 7 + 43 = 2843;
all eight are primes.
		

Crossrefs

Programs

  • Mathematica
    Select[f=k^4+k^3+k^2+k; k={0,1,2,3,4,5,6,7}; Prime[Range[2000000]], And @@ PrimeQ[#+f] &]
    Select[Prime[Range[12*10^5]],AllTrue[#+{4,30,120,340,780,1554,2800},PrimeQ]&] (* Harvey P. Dale, Apr 24 2022 *)
  • PARI
    forprime(p=1, 1e8, if( isprime(p+0)& isprime(p+4)& isprime(p+30)& isprime(p+120)& isprime(p+340)& isprime(p+780)&  isprime(p+1554)& isprime(p+2800), print1(p,", ")))

A253915 Primes p such that the polynomial k^4 + k^3 + k^2 + k + p yields primes for k = 0..8, but not for k = 9.

Original entry on oeis.org

43, 967, 11923, 213943, 2349313, 3316147, 30637567, 33421159, 39693817, 49978447, 105963769, 143405887, 148248949, 153756073, 156871549, 172981279, 187310803, 196726693, 203625283, 211977523, 220825453, 268375879, 350968543, 357834283, 414486697, 427990369
Offset: 1

Views

Author

K. D. Bajpai, Jan 18 2015

Keywords

Comments

All the terms in this sequence are congruent to 1 (mod 3).

Examples

			a(1) = 43:
0^4 + 0^3 + 0^2 + 0 + 43 =   43;
1^4 + 1^3 + 1^2 + 1 + 43 =   47;
2^4 + 2^3 + 2^2 + 2 + 43 =   73;
3^4 + 3^3 + 3^2 + 3 + 43 =  163;
4^4 + 4^3 + 4^2 + 4 + 43 =  383;
5^4 + 5^3 + 5^2 + 5 + 43 =  823;
6^4 + 6^3 + 6^2 + 6 + 43 = 1597;
7^4 + 7^3 + 7^2 + 7 + 43 = 2843;
8^4 + 8^3 + 8^2 + 8 + 43 = 4723;
all nine are primes, and
9^4 + 9^3 + 9^2 + 9 + 43 = 7423 = 13*571 is composite.
The next prime for p=43 appears for k=13, namely 30983.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[118*10^5]],AllTrue[#+{0,4,30,120,340,780,1554,2800,4680},PrimeQ]&&CompositeQ[#+7380]&] (* Harvey P. Dale, Sep 10 2021 *)
  • PARI
    forprime(p=1, 1e10, if(isprime(p+4)&& isprime(p+30)&& isprime(p+120)&& isprime(p+340)&& isprime(p+780)&& isprime(p+1554)&& isprime(p+2800)&& isprime(p+4680) && !isprime(p+7380), print1(p,", ")))

Extensions

Edited by Wolfdieter Lang, Feb 20 2015
Corrected and extended by Harvey P. Dale, Sep 10 2021
Showing 1-10 of 11 results. Next