A172482 a(n) = (1+n)*(9 + 11*n + 4*n^2)/3.
3, 16, 47, 104, 195, 328, 511, 752, 1059, 1440, 1903, 2456, 3107, 3864, 4735, 5728, 6851, 8112, 9519, 11080, 12803, 14696, 16767, 19024, 21475, 24128, 26991, 30072, 33379, 36920, 40703, 44736, 49027, 53584, 58415, 63528, 68931, 74632, 80639, 86960, 93603
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Jacob Brown, Counting Divisions of a 2×n Rectangular Grid, arXiv:2106.14755 [math.CO], 2021.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[(1+n)*(9+11*n+4*n^2)/3: n in [0..40]]; // Vincenzo Librandi, Aug 04 2011
-
Mathematica
CoefficientList[Series[(x + 3) (1 + x)/(x - 1)^4, {x, 0, 40}], x] (* Michael De Vlieger, Nov 02 2018 *)
-
PARI
a(n)=(1+n)*(9+11*n+4*n^2)/3 \\ Charles R Greathouse IV, Aug 04 2011
Formula
a(n) = 4*a(n) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) mod 10 = 3, 6, 7, 4, 5, 8, 1, 2, 9, 0 (and repeat periodically).
G.f.: (x+3)*(1+x)/(x-1)^4.
E.g.f.: exp(x)*(9 + 39*x + 27*x^2 + 4*x^3)/3. - Stefano Spezia, Mar 02 2025
Extensions
Edited by R. J. Mathar, Feb 24 2010
Comments