cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172482 a(n) = (1+n)*(9 + 11*n + 4*n^2)/3.

Original entry on oeis.org

3, 16, 47, 104, 195, 328, 511, 752, 1059, 1440, 1903, 2456, 3107, 3864, 4735, 5728, 6851, 8112, 9519, 11080, 12803, 14696, 16767, 19024, 21475, 24128, 26991, 30072, 33379, 36920, 40703, 44736, 49027, 53584, 58415, 63528, 68931, 74632, 80639, 86960, 93603
Offset: 0

Views

Author

Paul Curtz, Feb 04 2010

Keywords

Comments

One of the bisections of the left central column in the Janet table A172002.
Row 1 of the convolution array A213844. - Clark Kimberling, Jul 05 2012
With offset 2, this is 4*n^3/3 - 3*n^2 + 8*n/3 - 1, the number of divisions of a 2 X n board into 3 pieces where the rightmost squares separate. See Jacob Brown article. - Michel Marcus, Jun 29 2021

Crossrefs

Programs

Formula

a(n) = A131941(2n+2), where A100178(n) = A131941(2n-1).
a(n) = 4*a(n) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) mod 10 = 3, 6, 7, 4, 5, 8, 1, 2, 9, 0 (and repeat periodically).
G.f.: (x+3)*(1+x)/(x-1)^4.
E.g.f.: exp(x)*(9 + 39*x + 27*x^2 + 4*x^3)/3. - Stefano Spezia, Mar 02 2025

Extensions

Edited by R. J. Mathar, Feb 24 2010