cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A090443 a(n) = (n+2)! * (n+1)! * n! / 2.

Original entry on oeis.org

1, 6, 144, 8640, 1036800, 217728000, 73156608000, 36870930432000, 26547069911040000, 26281599211929600000, 34691710959747072000000, 59530976006925975552000000, 130015651599126330605568000000, 354942728865614882553200640000000, 1192607568988466005378754150400000000
Offset: 0

Views

Author

Wolfdieter Lang, Dec 23 2003

Keywords

Crossrefs

Programs

  • Maple
    a:=n->mul(j^3-j, j=2..n): seq(a(n), n=1..13); # Zerinvary Lajos, May 08 2008
  • Mathematica
    (Times@@#)/2&/@Partition[Range[0,20]!,3,1] (* Harvey P. Dale, Dec 03 2017 *)
  • Python
    from math import factorial
    def A090443(n): return factorial(n)**3*(n+2)*(n+1)**2>>1 # Chai Wah Wu, Apr 22 2024

Formula

Fourth column (m=3) of triangle A090441.
From Karol A. Penson Jul 25 2013: (Start)
G.f. of hypergeometric type:
Sum_{n>=0} a(n)*z^n/(n!)^3 = (1+2*z)/(1-z)^4;
integral representation as n-th moment of a positive function w(x) on a positive halfaxis (solution of the Stieltjes moment problem), in Maple notation:
a(n) = int(x^n*w(x),x=0..infinity), n>=0 where w(x)=MeijerG([[],[]],[[2,1,0]],[]],x)/2, w(0)=1/2, limit(w(x),x=infinity)=0. w(x) is monotonically decreasing over (0,infinity). The Meijer G function above cannot be represented by any other known special function.
This solution of the Stieltjes moment problem is not unique.
Asymptotics: a(n)->(1/32)*Pi^(3/2)*sqrt(2)*(32*n^2+136*n+193)*exp(-3*n)*(n)^(5/2+3*n), for n->infinity. (End)

A224900 a(n) = n!*((n+1)!)^2.

Original entry on oeis.org

1, 4, 72, 3456, 345600, 62208000, 18289152000, 8193540096000, 5309413982208000, 4778472583987200000, 5781951826624512000000, 9158611693373227008000000, 18573664514160904372224000000, 47325697182081984340426752000000, 149075946123558250672344268800000000
Offset: 0

Views

Author

Karol A. Penson, Jul 24 2013

Keywords

Comments

2*a(n-1) is the number of elements of the wreath product of S_n and S_3 with cycle partition equal to (3n). - Josaphat Baolahy, Mar 12 2024

Crossrefs

Cf. A172492.

Programs

  • Mathematica
    Table[n!*((n+1)!)^2,{n,0,15}]
  • Python
    from math import factorial
    def A224900(n): return factorial(n)**3*(n+1)**2 # Chai Wah Wu, Apr 22 2024

Formula

G.f. of hypergeometric type: Sum_{n>=0} a(n)*z^n/(n!)^3 = (1+z)/(1-z)^3.
Integral representation as n-th moment of a positive function w(x) on a positive half axis (solution of the Stieltjes moment problem), in Maple notation: a(n) = int(x^n*w(x),x=0..infinity), n>=0, where w(x) = MeijerG([[],[]],[[1,1,0]],[]],x), w(0)=1, limit(w(x),x=infinity)=0.
w(x) is monotonically decreasing over (0,infinity).
The Meijer G function above cannot be represented by any other known special function.
This solution of the Stieltjes moment problem is not unique.
Asymptotics: a(n) -> (1/960)*sqrt(2)*Pi^(3/2)*(1920*n^3 + 4320*n^2 + 2940*n + 589)*exp(-3*n)*n^(1/2 + 3*n), for n->oo.
a(n) = A172492(n)*(n+1).
a(n) - n*(n+1)^2*a(n-1) = 0. - R. J. Mathar, Jul 28 2013
Showing 1-2 of 2 results.