A172603 a(n) = (7n)!/(7!^n).
1, 1, 3432, 399072960, 472518347558400, 3177459078523411968000, 85722533226982363751829504000, 7363615666157189603982585462030336000, 1707750599894443404262670865631874246246400000
Offset: 0
Examples
a(3) = (7*3)!/(7!^3) = 399072960 is the number of permutations of a multiset that contains 3 different elements 7 times, e.g., {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3}.
Links
- Tilman Piesk, Table of n, a(n) for n = 0..54 (first 14 terms from R. H. Hardin)
Programs
-
Magma
[Factorial(7*n)/(5040^n): n in [0..20]]; // Vincenzo Librandi, Nov 01 2014
-
Maple
A172603:=n->(7*n)!/(5040^n): seq(A172603(n), n=0..10); # Wesley Ivan Hurt, Nov 01 2014
-
Mathematica
Table[(7 n)! / (5040^n), {n, 0, 10}] (* Vincenzo Librandi, Nov 01 2014 *)
Formula
a(n) = (7n)!/(7!^n).
Extensions
Name changed by Tilman Piesk, Oct 30 2014
Comments