cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A187783 De Bruijn's triangle, T(m,n) = (m*n)!/(n!^m) read by downward antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 6, 1, 1, 1, 20, 90, 24, 1, 1, 1, 70, 1680, 2520, 120, 1, 1, 1, 252, 34650, 369600, 113400, 720, 1, 1, 1, 924, 756756, 63063000, 168168000, 7484400, 5040, 1
Offset: 0

Views

Author

Robert G. Wilson v, Jan 05 2013

Keywords

Comments

From Tilman Piesk, Oct 28 2014: (Start)
Number of permutations of a multiset that contains m different elements n times. These multisets have the signatures A249543(m,n-1) for m>=1 and n>=2.
In an m-dimensional Pascal tensor (the generalization of a symmetric Pascal matrix) P(x1,...,xn) = (x1+...+xn)!/(x1!*...*xn!), so the main diagonal of an m-dimensional Pascal tensor is D(n) = (m*n)!/(n!^m). These diagonals are the rows of this array (with m>0), which begins like this:
m\n:0 1 2 3 4 5
0: 1 1 1 1 1 1 ... A000012;
1: 1 1 1 1 1 1 ... A000012;
2: 1 2 6 20 70 252 ... A000984;
3: 1 6 90 1680 34650 756756 ... A006480;
4: 1 24 2520 369600 63063000 11732745024 ... A008977;
5: 1 120 113400 168168000 305540235000 623360743125120 ... A008978;
6: 1 720 7484400 137225088000 3246670537110000 88832646059788350720 ... A008979;
with columns: A000142 (n=1), A000680 (n=2), A014606 (n=3), A014608 (n=4), A014609 (n=5).
A089759 is the transpose of this matrix. A034841 is its diagonal. A141906 is its lower triangle. A120666 is the upper triangle of this matrix with indices starting from 1. A248827 are the diagonal sums (or the row sums of the triangle).
(End)

Examples

			T(3,5) = (3*5)!/(5!^3) = 756756 = A014609(3) = A006480(5) is the number of permutations of a multiset that contains 3 different elements 5 times, e.g., {1,1,1,1,1,2,2,2,2,2,3,3,3,3,3}.
		

Crossrefs

Cf. A089759 (transposed), A141906 (subtriangle), A120666 (subtriangle transposed), A060538 (1st row/column removed).
Main diagonal gives: A034841.
Row sums of the triangle: A248827.

Programs

  • Magma
    [Factorial(k*(n-k))/(Factorial(n-k))^k: k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 26 2022
    
  • Mathematica
    T[n_, k_]:= (k*n)!/(n!)^k; Table[T[n, k-n], {k, 9}, {n, 0, k-1}]//Flatten
  • SageMath
    def A187783(n,k): return gamma(k*(n-k)+1)/(factorial(n-k))^k
    flatten([[A187783(n,k) for k in range(n+1)] for n in range(11)]) # G. C. Greubel, Dec 26 2022

Formula

T(m,n) = (m*n)!/(n!)^m.
A060540(m,n) = T(m,n)/m! . - R. J. Mathar, Jun 21 2023

Extensions

Row m=0 prepended by Tilman Piesk, Oct 28 2014

A177307 Number of permutations of 7 copies of 1..n with all adjacent differences <= 1 in absolute value.

Original entry on oeis.org

1, 1, 3432, 623576, 201922730, 48203722464, 11408205434138, 2535604038015218, 546641872918476120, 114573118435555703030, 23513682407867601161354, 4742254932865402388419776, 942857462878069039167940082, 185226548794692635344238756018, 36021105095432337381819132791160
Offset: 0

Views

Author

R. H. Hardin, May 06 2010

Keywords

Comments

a(n) = (7n)!/5040^n = A172603(n) for n<=2.

Crossrefs

Column k=7 of A331562.
Cf. A172603.

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 21 2020
Terms a(8) and beyond from Andrew Howroyd, May 15 2020

A269117 Number of sequences with 7 copies each of 1,2,...,n avoiding the pattern 12...n.

Original entry on oeis.org

0, 0, 1, 1850672, 11690616534627, 246211478304046636024, 14919265746950486383601562197, 2285085934263252199073238394141449534, 798203800902002138190338074022806761037450631, 586566986371155102435901052470650279895779757665905993
Offset: 0

Views

Author

Alois P. Heinz, Feb 19 2016

Keywords

Crossrefs

Column k=7 of A269129.

Formula

a(n) = A172603(n) - A268850(n).

A177308 Number of permutations of 7 copies of 1..n with all adjacent differences <= 2 in absolute value.

Original entry on oeis.org

1, 1, 3432, 399072960, 5188083048720, 39956935830445136, 452976400962846092338
Offset: 0

Views

Author

R. H. Hardin, May 06 2010

Keywords

Comments

a(n) = (7n)!/5040^n for n<=3.

Crossrefs

Cf. A172603.

A177309 Number of permutations of 7 copies of 1..n with all adjacent differences <= 3 in absolute value.

Original entry on oeis.org

1, 1, 3432, 399072960, 472518347558400, 102038786510159790720, 9792481437399343532438160
Offset: 0

Views

Author

R. H. Hardin, May 06 2010

Keywords

Comments

a(n) = (7n)!/5040^n for n<=4.

Crossrefs

Cf. A172603.
Showing 1-5 of 5 results.