A172989 Smallest k such that the two numbers n^2 +- k are primes.
1, 2, 3, 6, 5, 12, 3, 2, 3, 18, 5, 12, 3, 2, 15, 18, 7, 12, 21, 2, 63, 42, 55, 6, 15, 10, 27, 12, 19, 78, 15, 2, 93, 12, 5, 78, 15, 10, 21, 12, 23, 18, 57, 14, 27, 30, 7, 120, 117, 8, 15, 42, 37, 24, 27, 58, 93, 18, 7, 12, 75, 38, 3, 6, 7, 132, 27, 28, 69, 18, 5, 102, 27, 34, 75, 78, 5
Offset: 2
Keywords
Examples
2^2 +- 1 are both prime, 3^2 +- 2 are both prime, 4^2 +- 3 are both prime, 5^2 +- 6 are both prime, ...
Links
- Hugo Pfoertner, Table of n, a(n) for n = 2..10000
Programs
-
Magma
sol:=[]; for m in [2..80] do for k in [1..200] do if IsPrime(m^2-k) and IsPrime(m^2+k) then sol[m-1]:=k; break; end if; end for; end for; sol; // Marius A. Burtea, Jul 28 2019
-
Mathematica
f[n_]:=Block[{k},If[OddQ[n],k=2,k=1];While[ !PrimeQ[n-k]||!PrimeQ[n+k],k+=2];k];Table[f[n^2],{n,2,40}]
-
PARI
a(n) = my(k=1); while(!isprime(n^2+k) || !isprime(n^2-k), k++); k; \\ Michel Marcus, May 20 2018
Formula
a(n) = A082467(n^2). - Ivan N. Ianakiev, Jul 28 2019