A173033 Second diagonal under the main diagonal in A172119 written in a square (see comment).
1, 4, 12, 28, 60, 124, 252, 508, 1020, 2044, 4092, 8188, 16380, 32764, 65532, 131068, 262140, 524284, 1048572, 2097148, 4194300, 8388604, 16777212, 33554428, 67108860, 134217724, 268435452, 536870908, 1073741820, 2147483644, 4294967292, 8589934588, 17179869180
Offset: 0
Examples
a(3) = 2^5 - 4 = 32 - 4 = 28.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Vaclav Kotesovec, Non-attacking chess pieces, 6th ed, 2013, p. 215.
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Programs
-
Maple
taylor(4/(1-2*z)-4/(1-z)+1,z=0,31);
-
Mathematica
CoefficientList[Series[4 / (1 - 2 x) - 4 / (1 - x) + 1, {x, 0, 60}], x] (* Vincenzo Librandi, May 29 2013 *)
-
PARI
my(x='x+O('x^50)); Vec(4/(1-2*x)-4/(1-x)+1) \\ Altug Alkan, Nov 02 2015
-
Sage
def a(n): return 1 if 0==n else 2**(n+2) - 4 # Torlach Rush, Jan 09 2025
Formula
G.f.: 4/(1-2*x) - 4/(1-x) + 1.
a(n) = 2^(n+2) - 4 for n>=1, a(0)=1.
a(n) = A028399(n+2), n>0. - R. J. Mathar, Feb 21 2010
a(n) = A240951(n+3) - 4. - Omar E. Pol, Feb 17 2015
a(n) = 2*a(n-1) + 4 for n>1. - J. Conrad, Nov 01 2015
a(n) = 3*a(n-1)-2*a(n-2) for n>2. - Colin Barker, Nov 03 2015
E.g.f.: (1 - 2*exp(x))^2. - Stefano Spezia, May 03 2023
Comments