cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A137432 Number of ways to place n^2 nonattacking kings on a 2n X 2n cylindrical chessboard.

Original entry on oeis.org

1, 4, 32, 344, 4460, 66532, 1118398, 20984924, 437500380, 10105541204, 257860425672, 7241521734020, 222770819826574, 7466859257161488, 271156951835070930, 10609740515840572076, 444982726973034212924, 19911203110764903275188, 946564783226311159219150
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 31 2011

Keywords

Crossrefs

Formula

Conjecture: limit of a(n+1)/(n*a(n)) as n->infinity is e.
a(n) ~ c * n^n, where c = 2*exp(1)*(exp(1) - 1)^2 / (exp(1) - 2)^2 = 31.1116835720490503682643922791052352237386275089... - Vaclav Kotesovec, Jul 29 2023, updated Mar 18 2024

Extensions

a(11)-a(12) from Vaclav Kotesovec, Sep 08 2011
a(13)-a(27) from Alex V. Breger, Sep 10 2011
a(28)-a(31) from Alex V. Breger, Sep 12 2011
a(0)=1 prepended by Andrew Howroyd, Mar 26 2023

A324543 Möbius transform of A323243, where A323243(n) = sigma(A156552(n)).

Original entry on oeis.org

0, 1, 3, 3, 7, 2, 15, 4, 9, 5, 31, 3, 63, 2, 8, 16, 127, -1, 255, 4, 21, 16, 511, 8, 21, 20, 12, 27, 1023, 6, 2047, 8, 20, 48, 20, 20, 4095, 2, 78, 32, 8191, -6, 16383, 17, 9, 288, 32767, 8, 45, -3, 122, 45, 65535, 4, 53, 20, 270, 278, 131071, 2, 262143, 688, 12, 72, 56, 23, 524287, 125, 260, -8, 1048575, 20, 2097151, 260, 3, 363, 44, -7, 4194303
Offset: 1

Views

Author

Antti Karttunen, Mar 07 2019

Keywords

Comments

The first four zeros after a(1) occur at n = 192, 288, 3645, 6075.
There are 1562 negative terms among the first 10000 terms.
Applying this function to the divisors of the first four terms of A324201 reveals the following pattern:
----------------------------------------------------------------------------------
A324201 divisors a(n) applied to each: Sum
9: [1, 3, 9] -> [0, 3, 9] 12 = 2*6
125: [1, 5, 25, 125] -> [0, 7, 21, 28] 56 = 2*28
161051: [1, 11, 121, 1331, 14641, 161051] -> [0, 31, 93, 124, 496, 248] 992 = 2*496
410338673: [1, 17, 289, 4913, 83521, 1419857, 24137569, 410338673]
-> [0, 127, 381, 508, 2032, 1016, 9144, 3048] 16256 = 2*8128
The second term (the first nonzero) of the latter list = A000668(n), and the sum is always twice the corresponding perfect number, which forces either it or at least many of its divisors to be present. For example, in the fourth case, although 8128 = A000396(4) itself is not present, we still have 127, 508, 1016 and 2032 in the list. See also A329644.

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, MoebiusMu[n/#] If[# == 1, 0, DivisorSigma[1, Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ #]]]] &], {n, 79}] (* Michael De Vlieger, Mar 11 2019 *)
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n))));
    memoA323243 = Map();
    A323243(n) = if(1==n, 0, my(v); if(mapisdefined(memoA323243,n,&v),v, v=sigma(A156552(n)); mapput(memoA323243,n,v); (v)));
    A324543(n) = sumdiv(n,d,moebius(n/d)*A323243(d));

Formula

a(n) = Sum_{d|n} A008683(n/d) * A323243(d).
a(A000040(n)) = A000225(n).
a(A001248(n)) = A173033(n) - A000225(n) = A068156(n) = 3*(2^n - 1).
a(2*A000040(n)) = A324549(n).
a(A002110(n)) = A324547(n).
a(n) = 2*A297112(n) - A329644(n), and for n > 1, a(n) = 2^A297113(n) - A329644(n). - Antti Karttunen, Dec 08 2019

A169708 First differences of A169707.

Original entry on oeis.org

1, 4, 4, 12, 4, 12, 20, 28, 4, 12, 20, 28, 20, 44, 68, 60, 4, 12, 20, 28, 20, 44, 68, 60, 20, 44, 68, 76, 84, 156, 196, 124, 4, 12, 20, 28, 20, 44, 68, 60, 20, 44, 68, 76, 84, 156, 196, 124, 20, 44, 68, 76, 84, 156, 196, 140, 84, 156, 212, 236, 324, 508, 516, 252, 4, 12, 20, 28, 20
Offset: 0

Views

Author

N. J. A. Sloane, Apr 17 2010

Keywords

Examples

			From _Omar E. Pol_, Feb 13 2015: (Start)
Written as an irregular triangle in which row lengths are 1,1,2,4,8,16,32,... the sequence begins:
1;
4;
4,12;
4,12,20,28;
4,12,20,28,20,44,68,60;
4,12,20,28,20,44,68,60,20,44,68,76,84,156,196,124;
4,12,20,28,20,44,68,60,20,44,68,76,84,156,196,124,20,44,68,76,84,156,196,140,84,156,212,236,324,508,516,252;
It appears that the row sums give A000302.
It appears that the right border gives A173033.
(End)
		

Crossrefs

Formula

It appears that a(n) = 4*A160552(n), n >= 1. - Omar E. Pol, Feb 13 2015

Extensions

Initial 1 added by Omar E. Pol, Feb 13 2015

A160721 First differences of A160720.

Original entry on oeis.org

1, 4, 4, 12, 4, 12, 12, 28, 4, 12, 12, 28, 12, 28, 28, 60, 4, 12, 12, 28, 12, 28, 28, 60, 12, 28, 28, 60, 28, 60, 60, 124, 4, 12, 12, 28, 12, 28, 28, 60, 12, 28, 28, 60, 28, 60, 60, 124, 12, 28, 28, 60, 28, 60, 60, 124, 28, 60, 60, 124, 60, 124, 124, 252, 4, 12, 12, 28, 12, 28, 28
Offset: 1

Views

Author

Omar E. Pol, May 25 2009, May 29 2009

Keywords

Comments

This sequence is related to the Sierpinski triangle and to Gould's sequence A001316. - Omar E. Pol, Jul 23 2009
When written as a irregular triangle in which row lengths are A011782 it appears that right border gives A173033. - Omar E. Pol, Mar 20 2013

Examples

			From _Omar E. Pol_, Mar 20 2013 (Start):
Triangle begins:
1;
4;
4,12;
4,12,12,28;
4,12,12,28,12,28,28,60;
4,12,12,28,12,28,28,60,12,28,28,60,28,60,60,124;
4,12,12,28,12,28,28,60,12,28,28,60,28,60,60,124,12,28,28,60,28,60,60,124,28,60,60,124,60,124,124,252;
(End)
		

Crossrefs

Formula

a(1)=1. Observation: It appears that a(n) = 4*A038573(n-1), n>1. [From Omar E. Pol, Jul 23 2009]. This formula is correct! - N. J. A. Sloane, Jan 23 2016

Extensions

More terms from R. J. Mathar, Jul 14 2009

A182464 a(n) = 3a(n-1) - 2a(n-2) with a(0)=24 and a(1)=60.

Original entry on oeis.org

24, 60, 132, 276, 564, 1140, 2292, 4596, 9204, 18420, 36852, 73716, 147444, 294900, 589812, 1179636, 2359284, 4718580, 9437172, 18874356, 37748724, 75497460, 150994932, 301989876, 603979764, 1207959540, 2415919092, 4831838196, 9663676404, 19327352820, 38654705652
Offset: 0

Views

Author

Odimar Fabeny, Apr 30 2012

Keywords

Comments

Number of vertices into building blocks of 3d objects with 6 vertices.

Examples

			a(0) = 6+12+6;
a(1) = 6+12+24+12+6;
a(2) = 6+12+24+48+24+12+6;
a(3) = 6+12+24+48+96+48+24+12+6.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-((12 (x - 2))/(2 x^2 - 3 x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 01 2014 *)
    LinearRecurrence[{3,-2},{24,60},40] (* Harvey P. Dale, May 27 2018 *)

Formula

a(n) = a(n-1)*2 + 12.
a(n) = 12*A153893(n). - Michel Marcus, Jun 01 2014
G.f.: -((12*(x-2))/(2*x^2-3*x+1)). - Vincenzo Librandi, Jun 01 2014

A182467 a(n) = 3a(n-1) - 2a(n-2) with a(0)=36 and a(1)=90.

Original entry on oeis.org

36, 90, 198, 414, 846, 1710, 3438, 6894, 13806, 27630, 55278, 110574, 221166, 442350, 884718, 1769454, 3538926, 7077870, 14155758, 28311534, 56623086, 113246190, 226492398, 452984814, 905969646, 1811939310, 3623878638, 7247757294, 14495514606, 28991029230
Offset: 0

Views

Author

Odimar Fabeny, Apr 30 2012

Keywords

Comments

Number of vertices into building blocks of 3d objects with 9 vertices.

Examples

			a(0) = 9+18+9;
a(1) = 9+18+36+18+9;
a(2) = 9+18+36+72+36+18+9;
a(3) = 9+18+36+72+144+72+36+18+9.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,-2},{36,90},30] (* or *) CoefficientList[Series[(-18(x-2))/(1-3x+2x^2),{x,0,30}],x] (* Harvey P. Dale, Apr 29 2013 *)

Formula

a(n) = a(n-1)*2 + 18
G.f.: -((18*(x-2))/(2*x^2-3*x+1)). - Harvey P. Dale, Apr 29 2013
a(n) = 18*A153893(n). - Michel Marcus, Jun 01 2014

A182461 a(n) = 3*a(n-1) - 2*a(n-2) with a(0)=16 and a(1)=40.

Original entry on oeis.org

16, 40, 88, 184, 376, 760, 1528, 3064, 6136, 12280, 24568, 49144, 98296, 196600, 393208, 786424, 1572856, 3145720, 6291448, 12582904, 25165816, 50331640, 100663288, 201326584, 402653176, 805306360, 1610612728, 3221225464, 6442450936, 12884901880
Offset: 0

Views

Author

Odimar Fabeny, Apr 30 2012

Keywords

Comments

Number of vertices into building blocks of 3d objects with 4 vertices.

Examples

			a(0) = 4+8+4;
a(1) = 4+8+16+8+4;
a(2) = 4+8+16+32+16+8+4;
a(3) = 4+8+16+32+64+32+16+8+4.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-((8 (x - 2))/(2 x^2 - 3 x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 02 2014 *)

Formula

a(n) = a(n-1)*2 + 8.
G.f.: 16 + 40*x + 88*x^2 + 184*x^3 + 376*x^4 + 760*x^5 + 1528*x^6 + ...
a(n) = 8 * A055010(n+1). [Joerg Arndt, Jun 01 2014]
G.f.: -((8*(x - 2))/(2*x^2 - 3*x + 1)). - Vincenzo Librandi, Jun 02 2014

A182462 a(n) = 3a(n-1) - 2a(n-2) with a(0)=20 and a(1)=50.

Original entry on oeis.org

20, 50, 110, 230, 470, 950, 1910, 3830, 7670, 15350, 30710, 61430, 122870, 245750, 491510, 983030, 1966070, 3932150, 7864310, 15728630, 31457270, 62914550, 125829110, 251658230, 503316470, 1006632950, 2013265910, 4026531830, 8053063670, 16106127350
Offset: 0

Views

Author

Odimar Fabeny, Apr 30 2012

Keywords

Comments

Number of vertices into building blocks of 3d objects with 5 vertices.

Examples

			a(0) = 5+10+5;
a(1) = 5+10+20+10+5;
a(2) = 5+10+20+40+20+10+5;
a(3) = 5+10+20+40+80+40+20+10+5.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-((10 (x - 2))/(2 x^2 - 3 x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 02 2014 *)

Formula

a(n) = a(n-1)*2 + 10.
a(n) = 10*A153893(n). - Michel Marcus, Jun 01 2014
G.f.: -((10*(x - 2))/(2*x^2 - 3*x + 1)). - Vincenzo Librandi, Jun 02 2014

A182465 a(n) = 3a(n-1) - 2a(n-2) with a(0)=28 and a(1)=70.

Original entry on oeis.org

28, 70, 154, 322, 658, 1330, 2674, 5362, 10738, 21490, 42994, 86002, 172018, 344050, 688114, 1376242, 2752498, 5505010, 11010034, 22020082, 44040178, 88080370, 176160754, 352321522, 704643058, 1409286130, 2818572274, 5637144562, 11274289138, 22548578290
Offset: 0

Views

Author

Odimar Fabeny, Apr 30 2012

Keywords

Comments

Number of vertices into building blocks of 3d objects with 7 vertices.

Examples

			a(0) = 7+14+7;
a(0) = 7+14+28+14+7;
a(0) = 7+14+28+56+28+14+7;
a(0) = 7+14+28+56+112+56+28+14+7.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-((14 (x - 2))/(2 x^2 - 3 x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 01 2014 *)
    LinearRecurrence[{3,-2},{28,70},30] (* Harvey P. Dale, Oct 05 2015 *)

Formula

a(n) = a(n-1)*2 + 14.
a(n) = 14*A153893(n). - Michel Marcus, Jun 01 2014
G.f.: -((14*(x-2))/(2*x^2-3*x+1)). - Vincenzo Librandi, Jun 01 2014

A182466 a(n) = 3a(n-1) - 2a(n-2) with a(0)=32 and a(1)=80.

Original entry on oeis.org

32, 80, 176, 368, 752, 1520, 3056, 6128, 12272, 24560, 49136, 98288, 196592, 393200, 786416, 1572848, 3145712, 6291440, 12582896, 25165808, 50331632, 100663280, 201326576, 402653168, 805306352, 1610612720, 3221225456, 6442450928, 12884901872, 25769803760, 51539607536
Offset: 0

Views

Author

Odimar Fabeny, Apr 30 2012

Keywords

Comments

Number of vertices into building blocks of 3d objects with 8 vertices.

Examples

			a(0) = 8+16+8;
a(1) = 8+16+32+16+8;
a(2) = 8+16+32+64+32+16+8;
a(3) = 8+16+32+64+128+64+32+16+8.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,-2},{32,80},40] (* or *) Table[8(3*2^n-2),{n,40}] (* Harvey P. Dale, Aug 23 2012 *)
    CoefficientList[Series[-((16 (x - 2))/(2 x^2 - 3 x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 02 2014 *)

Formula

a(n) = a(n-1)*2 + 16.
a(n) = 8*(3*2^n-2). - Harvey P. Dale, Aug 23 2012
G.f.: -((16(x-2))/(2*x^2-3*x+1)). - Harvey P. Dale, Aug 23 2012
Showing 1-10 of 17 results. Next