A182467
a(n) = 3a(n-1) - 2a(n-2) with a(0)=36 and a(1)=90.
Original entry on oeis.org
36, 90, 198, 414, 846, 1710, 3438, 6894, 13806, 27630, 55278, 110574, 221166, 442350, 884718, 1769454, 3538926, 7077870, 14155758, 28311534, 56623086, 113246190, 226492398, 452984814, 905969646, 1811939310, 3623878638, 7247757294, 14495514606, 28991029230
Offset: 0
a(0) = 9+18+9;
a(1) = 9+18+36+18+9;
a(2) = 9+18+36+72+36+18+9;
a(3) = 9+18+36+72+144+72+36+18+9.
-
LinearRecurrence[{3,-2},{36,90},30] (* or *) CoefficientList[Series[(-18(x-2))/(1-3x+2x^2),{x,0,30}],x] (* Harvey P. Dale, Apr 29 2013 *)
A182461
a(n) = 3*a(n-1) - 2*a(n-2) with a(0)=16 and a(1)=40.
Original entry on oeis.org
16, 40, 88, 184, 376, 760, 1528, 3064, 6136, 12280, 24568, 49144, 98296, 196600, 393208, 786424, 1572856, 3145720, 6291448, 12582904, 25165816, 50331640, 100663288, 201326584, 402653176, 805306360, 1610612728, 3221225464, 6442450936, 12884901880
Offset: 0
a(0) = 4+8+4;
a(1) = 4+8+16+8+4;
a(2) = 4+8+16+32+16+8+4;
a(3) = 4+8+16+32+64+32+16+8+4.
-
CoefficientList[Series[-((8 (x - 2))/(2 x^2 - 3 x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 02 2014 *)
A182462
a(n) = 3a(n-1) - 2a(n-2) with a(0)=20 and a(1)=50.
Original entry on oeis.org
20, 50, 110, 230, 470, 950, 1910, 3830, 7670, 15350, 30710, 61430, 122870, 245750, 491510, 983030, 1966070, 3932150, 7864310, 15728630, 31457270, 62914550, 125829110, 251658230, 503316470, 1006632950, 2013265910, 4026531830, 8053063670, 16106127350
Offset: 0
a(0) = 5+10+5;
a(1) = 5+10+20+10+5;
a(2) = 5+10+20+40+20+10+5;
a(3) = 5+10+20+40+80+40+20+10+5.
-
CoefficientList[Series[-((10 (x - 2))/(2 x^2 - 3 x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 02 2014 *)
A182465
a(n) = 3a(n-1) - 2a(n-2) with a(0)=28 and a(1)=70.
Original entry on oeis.org
28, 70, 154, 322, 658, 1330, 2674, 5362, 10738, 21490, 42994, 86002, 172018, 344050, 688114, 1376242, 2752498, 5505010, 11010034, 22020082, 44040178, 88080370, 176160754, 352321522, 704643058, 1409286130, 2818572274, 5637144562, 11274289138, 22548578290
Offset: 0
a(0) = 7+14+7;
a(0) = 7+14+28+14+7;
a(0) = 7+14+28+56+28+14+7;
a(0) = 7+14+28+56+112+56+28+14+7.
-
CoefficientList[Series[-((14 (x - 2))/(2 x^2 - 3 x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 01 2014 *)
LinearRecurrence[{3,-2},{28,70},30] (* Harvey P. Dale, Oct 05 2015 *)
A182466
a(n) = 3a(n-1) - 2a(n-2) with a(0)=32 and a(1)=80.
Original entry on oeis.org
32, 80, 176, 368, 752, 1520, 3056, 6128, 12272, 24560, 49136, 98288, 196592, 393200, 786416, 1572848, 3145712, 6291440, 12582896, 25165808, 50331632, 100663280, 201326576, 402653168, 805306352, 1610612720, 3221225456, 6442450928, 12884901872, 25769803760, 51539607536
Offset: 0
a(0) = 8+16+8;
a(1) = 8+16+32+16+8;
a(2) = 8+16+32+64+32+16+8;
a(3) = 8+16+32+64+128+64+32+16+8.
-
LinearRecurrence[{3,-2},{32,80},40] (* or *) Table[8(3*2^n-2),{n,40}] (* Harvey P. Dale, Aug 23 2012 *)
CoefficientList[Series[-((16 (x - 2))/(2 x^2 - 3 x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 02 2014 *)
A212221
Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is 1/(2*n) times the number of n-colorings of the complete tripartite graph K_(k,k,k).
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 0, 1, 3, 0, 0, 1, 12, 6, 0, 0, 1, 30, 78, 10, 0, 0, 1, 66, 474, 340, 15, 0, 0, 1, 138, 2238, 4780, 1095, 21, 0, 0, 1, 282, 9546, 46420, 32955, 2856, 28, 0, 0, 1, 570, 38958, 385660, 617775, 168546, 6412, 36
Offset: 1
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, 0, ...
0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, ...
3, 12, 30, 66, 138, 282, 570, ...
6, 78, 474, 2238, 9546, 38958, 155994, ...
10, 340, 4780, 46420, 385660, 2995540, 22666780, ...
15, 1095, 32955, 617775, 9248595, 123920295, 1569542955, ...
-
P:= proc(n) option remember;
unapply(expand(add(add(Stirling2(n, k) *Stirling2(n, m)
*mul(q-i, i=0..k+m-1) *(q-k-m)^n, m=1..n), k=1..n)), q)
end:
A:= (n, k)-> P(k)(n)/(2*n):
seq(seq(A(n, 1+d-n), n=1..d), d=1..12);
-
p[n_] := p[n] = Function[q, Expand[Sum[Sum[StirlingS2[n, k] * StirlingS2[n, m] * Product[q-i, {i, 0, k+m-1}]*(q-k-m)^n, {m, 1, n}], {k, 1, n}]]]; a[n_, k_] := p[k][n]/(2*n); Table[Table[a[n, 1+d-n], {n, 1, d}], {d, 1, 12}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from Maple *)
Showing 1-6 of 6 results.
Comments