cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A301632 Numbers k such that 3^k + k + 1 is a prime.

Original entry on oeis.org

0, 1, 3, 15, 45, 117, 159, 3739, 3777, 9703, 10623, 21459, 86595
Offset: 1

Views

Author

Seiichi Manyama, Mar 25 2018

Keywords

Comments

a(14) > 200000. - Michael S. Branicky, May 19 2025

Crossrefs

A182327 gives the primes.

Programs

  • Maple
    a:=n->`if`(isprime(3^k+k+1),k,NULL): seq(a(k),k=0..6000); # Muniru A Asiru, Mar 25 2018
  • Mathematica
    Flatten[{0, Select[Range[5000], PrimeQ[3^# + # + 1] &]}] (* Vaclav Kotesovec, Mar 25 2018 *)
  • PARI
    for(n=0, 1000, if(isprime(3^n+n+1), print1(n", ")))

Extensions

a(8)-a(9) from Muniru A Asiru, Mar 25 2018
a(10)-a(11) from Vaclav Kotesovec, Mar 25 2018
a(12) from Altug Alkan, Apr 01 2018
a(13) from Giovanni Resta, Apr 06 2018

A301633 Numbers k such that 4^(2*k) + 2*k + 1 is a prime.

Original entry on oeis.org

0, 1, 33, 123, 235, 513, 3441, 5836, 71071
Offset: 1

Views

Author

Seiichi Manyama, Mar 25 2018

Keywords

Comments

Next term, if it exists, is greater than 10000. - Vaclav Kotesovec, Mar 25 2018

Crossrefs

A301637 gives the primes.

Programs

  • Maple
    a:=n->`if`(isprime(4^(2*k)+2*k+1),k,NULL): seq(a(k),k=0..5000); # Muniru A Asiru, Mar 25 2018
  • Mathematica
    Flatten[{0, Select[Range[1000], PrimeQ[16^# + 2*# + 1] &]}] (* Vaclav Kotesovec, Mar 25 2018 *)
  • PARI
    for(n=0, 500, if(isprime(4^(2*n)+2*n+1), print1(n", ")))

Extensions

a(7) from Muniru A Asiru, Mar 25 2018
a(8) from Vaclav Kotesovec, Mar 25 2018
a(9) from Michael S. Branicky, Dec 08 2024
Showing 1-2 of 2 results.