cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A182327 Primes of the form 3^k + k + 1.

Original entry on oeis.org

2, 5, 31, 14348923, 2954312706550833698689, 66555937033867822607895549241096482953017615834735226281, 7282483350946404208076885500996745047522350034970917293604274649554310785227
Offset: 1

Views

Author

Alex Ratushnyak, Apr 25 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Table[3^n + n + 1, {n, 0, 150}], PrimeQ] (* T. D. Noe, Apr 25 2012 *)

Extensions

a(7) from Seiichi Manyama, Mar 25 2018

A301633 Numbers k such that 4^(2*k) + 2*k + 1 is a prime.

Original entry on oeis.org

0, 1, 33, 123, 235, 513, 3441, 5836, 71071
Offset: 1

Views

Author

Seiichi Manyama, Mar 25 2018

Keywords

Comments

Next term, if it exists, is greater than 10000. - Vaclav Kotesovec, Mar 25 2018

Crossrefs

A301637 gives the primes.

Programs

  • Maple
    a:=n->`if`(isprime(4^(2*k)+2*k+1),k,NULL): seq(a(k),k=0..5000); # Muniru A Asiru, Mar 25 2018
  • Mathematica
    Flatten[{0, Select[Range[1000], PrimeQ[16^# + 2*# + 1] &]}] (* Vaclav Kotesovec, Mar 25 2018 *)
  • PARI
    for(n=0, 500, if(isprime(4^(2*n)+2*n+1), print1(n", ")))

Extensions

a(7) from Muniru A Asiru, Mar 25 2018
a(8) from Vaclav Kotesovec, Mar 25 2018
a(9) from Michael S. Branicky, Dec 08 2024

A300010 Numbers k such that 3^k + k - 1 is a prime.

Original entry on oeis.org

1, 3, 65, 123, 435, 465, 677, 947, 4215, 5615, 69749
Offset: 1

Views

Author

Vincenzo Librandi, Apr 01 2018

Keywords

Comments

Corresponding primes: 3, 29, 10301051460877537453973547267907, 48519278097689642681155855396759336072749841943521979872949, ...
a(12), if it exists, is greater than 100000. - Michael S. Branicky, Oct 09 2024

Crossrefs

Programs

  • Magma
    [k: k in [1..700] | IsPrime(3^k+k-1)];
    
  • Maple
    select(k->isprime(3^k+k-1),[$1..1000]); # Muniru A Asiru, Apr 05 2018
  • Mathematica
    Flatten[{Select[Range[6000], PrimeQ[3^# + # - 1] &]}]
  • PARI
    lista(nn) = forstep(n=1, nn, 2, if(ispseudoprime(3^n + n - 1), print1(n, ", "))); \\ Altug Alkan, Apr 01 2018

Extensions

a(11) from Michael S. Branicky, Oct 08 2024
Showing 1-3 of 3 results.