A182327
Primes of the form 3^k + k + 1.
Original entry on oeis.org
2, 5, 31, 14348923, 2954312706550833698689, 66555937033867822607895549241096482953017615834735226281, 7282483350946404208076885500996745047522350034970917293604274649554310785227
Offset: 1
-
Select[Table[3^n + n + 1, {n, 0, 150}], PrimeQ] (* T. D. Noe, Apr 25 2012 *)
A301633
Numbers k such that 4^(2*k) + 2*k + 1 is a prime.
Original entry on oeis.org
0, 1, 33, 123, 235, 513, 3441, 5836, 71071
Offset: 1
-
a:=n->`if`(isprime(4^(2*k)+2*k+1),k,NULL): seq(a(k),k=0..5000); # Muniru A Asiru, Mar 25 2018
-
Flatten[{0, Select[Range[1000], PrimeQ[16^# + 2*# + 1] &]}] (* Vaclav Kotesovec, Mar 25 2018 *)
-
for(n=0, 500, if(isprime(4^(2*n)+2*n+1), print1(n", ")))
A300010
Numbers k such that 3^k + k - 1 is a prime.
Original entry on oeis.org
1, 3, 65, 123, 435, 465, 677, 947, 4215, 5615, 69749
Offset: 1
-
[k: k in [1..700] | IsPrime(3^k+k-1)];
-
select(k->isprime(3^k+k-1),[$1..1000]); # Muniru A Asiru, Apr 05 2018
-
Flatten[{Select[Range[6000], PrimeQ[3^# + # - 1] &]}]
-
lista(nn) = forstep(n=1, nn, 2, if(ispseudoprime(3^n + n - 1), print1(n, ", "))); \\ Altug Alkan, Apr 01 2018
Showing 1-3 of 3 results.
Comments