cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A301632 Numbers k such that 3^k + k + 1 is a prime.

Original entry on oeis.org

0, 1, 3, 15, 45, 117, 159, 3739, 3777, 9703, 10623, 21459, 86595
Offset: 1

Views

Author

Seiichi Manyama, Mar 25 2018

Keywords

Comments

a(14) > 200000. - Michael S. Branicky, May 19 2025

Crossrefs

A182327 gives the primes.

Programs

  • Maple
    a:=n->`if`(isprime(3^k+k+1),k,NULL): seq(a(k),k=0..6000); # Muniru A Asiru, Mar 25 2018
  • Mathematica
    Flatten[{0, Select[Range[5000], PrimeQ[3^# + # + 1] &]}] (* Vaclav Kotesovec, Mar 25 2018 *)
  • PARI
    for(n=0, 1000, if(isprime(3^n+n+1), print1(n", ")))

Extensions

a(8)-a(9) from Muniru A Asiru, Mar 25 2018
a(10)-a(11) from Vaclav Kotesovec, Mar 25 2018
a(12) from Altug Alkan, Apr 01 2018
a(13) from Giovanni Resta, Apr 06 2018

A301637 Primes of the form 4^k + k + 1.

Original entry on oeis.org

2, 19, 5444517870735015415413993718908291383363
Offset: 1

Views

Author

Seiichi Manyama, Mar 25 2018

Keywords

Crossrefs

Primes of the form b^k+k+1: A061421 (b=2), A182327 (b=3), this sequence (b=4).
Cf. A301633.

Programs

  • Maple
    a:=n->`if`(isprime(4^k+k+1),4^k+k+1,NULL): seq(a(k),k=0..300); # Muniru A Asiru, Mar 25 2018

Formula

a(n) = 4^(2*A301633(n)) + 2*A301633(n) + 1.
Showing 1-2 of 2 results.