cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173102 Number of partitions x + y = z with {x,y,z} in {1,2,3,..,3*n} and z > y >= x.

Original entry on oeis.org

2, 9, 20, 36, 56, 81, 110, 144, 182, 225, 272, 324, 380, 441, 506, 576, 650, 729, 812, 900, 992, 1089, 1190, 1296, 1406, 1521, 1640, 1764, 1892, 2025, 2162, 2304, 2450, 2601, 2756, 2916, 3080, 3249, 3422, 3600, 3782, 3969, 4160, 4356, 4556, 4761, 4970
Offset: 1

Views

Author

Artur Jasinski, Feb 09 2010

Keywords

Crossrefs

Programs

  • Maple
    seq( (-1 +(-1)^n +18*n^2)/8, n=1..50); # G. C. Greubel, Mar 03 2020
  • Mathematica
    aa = {}; Do[i = 0; Do[Do[Do[If[x + y == z, i = i + 1], {x, y, 3 n}], {y, 1, 3 n}], {z, 1, 3 n}]; AppendTo[aa, i], {n, 1, 50}]; aa
  • PARI
    vector(50, n, (18*n^2 +(-1)^n -1)/8 ) \\ G. C. Greubel, Mar 03 2020
  • Python
    def A173102(n):
        return (9*n**2 - (n % 2))//4 # Chai Wah Wu, Mar 03 2020
    

Formula

Conjectures from Colin Barker, Sep 04 2013: (Start)
a(n) = (-1 + (-1)^n + 18*n^2)/8.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: x*(2+x)*(1+2*x)/((1-x)^3*(1+x)). (End)
Conjecture: a(n) = Sum_{j=1..n} Sum_{i=1..n} ceiling((i+j-n+3)/2). - Wesley Ivan Hurt, Mar 12 2015
From Chai Wah Wu, Mar 03 2020: (Start)
a(n) = (9*n^2-1)/4 if n is odd and a(n) = 9*n^2/4 if n is even.
Proof: z ranges from 2 to 3*n. For each z, since z = y+x >= 2*x, x ranges from 1 to floor(z/2), i.e. there are floor(z/2) partitions. Thus the total number of partitions is a(n) = Sum_{z = 2..3*n} floor(z/2).
For z odd, floor(z/2) = floor((z-1)/2).
As a consequence, if n is odd, 3*n is odd and floor(z/2) occur in pairs, i.e. Sum_{z = 2..3*n} floor(z/2) = 2*(Sum_{w = 1..floor(3*n/2)} w) = 2*(Sum_{w = 1..(3*n-1)/2} w) = 2*((3*n-1)*(3*n+1)/8) = (3*n-1)*(3*n+1)/4 = (9*n^2-1)/4.
If n is even, 3*n is even and floor(z/2) occurs in pairs, except for when z = 3*n where floor(z/2) occurs once. Thus Sum_{z = 2..3*n} floor(z/2) = 2*(Sum_{w = 1..floor(3*n/2)} w) - floor(3*n/2).
This is equal to 2*(Sum_{w = 1..3*n/2} w) - 3*n/2 = (3*n/2)*(3*n/2+1) - 3*n/2 = 9*n^2/4.
This also implies that the above conjectures on the recurrence and g.f. are true.
(End)
E.g.f.: (9*x*(1 + x)*cosh(x) + (-1 + 9*x + 9*x^2)*sinh(x))/4. - Stefano Spezia, Mar 04 2020