cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173104 The number of possible borders of Latin squares.

Original entry on oeis.org

1, 2, 12, 624, 110880, 58769280, 67704940800, 149428671436800, 574091539551129600, 3581833707481042944000, 34393612685291413069824000, 486990328595374993951457280000, 9818890674272030616178239406080000, 273823820339488809857168046768783360000
Offset: 1

Views

Author

Johan de Ruiter, Feb 09 2010

Keywords

Comments

The definition is not quite right, and should be corrected.

Examples

			Two arbitrary configurations for n=3:
  123   312
  2 1   1 3
  312   231
Two arbitrary configurations for n=4:
  1234   1432
  2  1   3  4
  3  2   4  1
  4123   2143
		

Crossrefs

Related to A000166. Equals A173103 multiplied by n!.

Programs

  • Maple
    d:= proc(n) d(n):= `if`(n<=1, 1-n, (n-1)*(d(n-1)+d(n-2))) end:
    b:= proc(n) b(n):= `if`(n<4, [1, 1, 2][n], (n-2)!*((n-1)/
           (n-2)*d(n-1)^2+2*d(n-1)*d(n-2)+(2*n-5)/(n-3)*d(n-2)^2))
        end:
    a:= n-> n!*b(n):
    seq(a(n), n=1..20);  # Alois P. Heinz, Aug 18 2013
  • Mathematica
    d = Subfactorial;
    a[n_] := If[n <= 3, {1, 2, 12}[[n]], n! (n-2)! ((n-1)/(n-2) d[n-1]^2 + 2d[n-1] d[n-2] + (2n-5)/(n-3) d[n-2]^2)];
    Array[a, 20] (* Jean-François Alcover, Nov 10 2020 *)

Formula

For n>3, a(n)=n!(n-2)!((n-1)/(n-2)d[n-1]^2+2d[n-1]d[n-2]+(2n-5)/(n-3)d[n-2]^2), where d[k] is the number of derangements of k elements (A000166).