A173120 Triangle T(n, k, q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with T(n,0) = T(n,n) = 1 for q = -4, read by rows.
1, 1, 1, 1, -2, 1, 1, -1, -1, 1, 1, 0, -2, 0, 1, 1, 1, 14, 14, 1, 1, 1, 2, 15, 28, 15, 2, 1, 1, 3, 17, -21, -21, 17, 3, 1, 1, 4, 20, -4, -42, -4, 20, 4, 1, 1, 5, 24, 16, 210, 210, 16, 24, 5, 1, 1, 6, 29, 40, 226, 420, 226, 40, 29, 6, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, -2, 1; 1, -1, -1, 1; 1, 0, -2, 0, 1; 1, 1, 14, 14, 1, 1; 1, 2, 15, 28, 15, 2, 1; 1, 3, 17, -21, -21, 17, 3, 1; 1, 4, 20, -4, -42, -4, 20, 4, 1; 1, 5, 24, 16, 210, 210, 16, 24, 5, 1; 1, 6, 29, 40, 226, 420, 226, 40, 29, 6, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Mathematica
T[n_, k_, q_]:= If[k==0 || k==n, 1, q*Boole[n==2] + Sum[q^j*Binomial[n-2*j, k-j]*Boole[n>2*j], {j,0,5}]]; Table[T[n,k,-4], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Apr 27 2021 *)
-
Sage
@CachedFunction def T(n,k,q): return 1 if (k==0 or k==n) else q*bool(n==2) + sum( q^j*binomial(n-2*j, k-j)*bool(n>2*j) for j in (0..5) ) flatten([[T(n,k,-4) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 27 2021
Formula
T(n, k, q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with T(n,0) = T(n,n) = 1 for q = -4.
Sum_{k=0..n} T(n, k, q) = [n=0] + q*[n=2] + Sum_{j=0..5} q^j*2^(n-2*j)*[n > 2*j] for q = -4. - G. C. Greubel, Apr 27 2021
Extensions
Edited by G. C. Greubel, Apr 27 2021