cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A173161 Decimal expansion of the solution x to x^x=7.

Original entry on oeis.org

2, 3, 1, 6, 4, 5, 4, 9, 5, 8, 7, 8, 5, 6, 1, 2, 3, 0, 1, 3, 2, 5, 5, 0, 3, 0, 1, 5, 6, 0, 3, 0, 6, 1, 0, 5, 7, 4, 7, 1, 1, 4, 9, 0, 6, 0, 7, 5, 8, 5, 8, 5, 8, 2, 2, 5, 5, 9, 8, 8, 3, 4, 9, 5, 1, 9, 3, 7, 3, 7, 2, 0, 3, 5, 5, 8, 5, 2, 7, 0, 6, 5, 7, 1, 1, 2, 1, 0, 8, 4, 5, 6, 9, 2, 8, 3, 9, 3, 4, 3, 6, 1, 8, 8, 2
Offset: 1

Views

Author

Keywords

Examples

			2.3164549..^2.3164549..=7
		

Crossrefs

Programs

  • Mathematica
    x=7;RealDigits[Log[x]/ProductLog[Log[x]],10,6! ][[1]]

Formula

Digits of log(7)/W(log(7)).

Extensions

Keyword:cons added by R. J. Mathar, Feb 13 2010

A186501 Decimal expansion of the solution x to x^x = 11.

Original entry on oeis.org

2, 5, 5, 5, 6, 0, 4, 6, 1, 2, 1, 0, 0, 8, 2, 0, 6, 1, 5, 2, 5, 1, 4, 5, 4, 2, 6, 5, 4, 7, 1, 6, 6, 8, 8, 2, 5, 1, 6, 6, 6, 2, 4, 5, 5, 4, 6, 7, 7, 0, 0, 8, 2, 6, 5, 7, 4, 4, 4, 7, 7, 9, 0, 5, 1, 9, 4, 6, 9, 4, 0, 9, 1, 0, 5, 5, 6, 7, 9, 2, 3, 8, 0, 7, 8, 5, 3, 5, 0, 3, 1, 4, 6, 9, 5, 3, 6, 8, 2, 1, 6, 6
Offset: 1

Views

Author

Keywords

Examples

			2.5556046121008206152514542654716688251666246..
		

Crossrefs

Programs

  • Mathematica
    x=11;RealDigits[Log[x]/ProductLog[Log[x]],10,103][[1]]
    RealDigits[x/.FindRoot[x^x==11,{x,2},WorkingPrecision->110]][[1]] (* Harvey P. Dale, Nov 13 2011 *)

A186502 Decimal expansion of the solution x to x^x = 12.

Original entry on oeis.org

2, 6, 0, 0, 2, 9, 5, 0, 0, 0, 0, 5, 3, 9, 1, 5, 5, 8, 7, 7, 1, 7, 2, 0, 8, 2, 2, 1, 9, 4, 1, 1, 6, 9, 9, 1, 6, 4, 3, 7, 8, 3, 7, 7, 1, 0, 1, 0, 8, 3, 8, 8, 2, 0, 0, 2, 3, 2, 6, 1, 9, 5, 4, 9, 8, 2, 5, 9, 1, 5, 1, 6, 1, 4, 7, 5, 0, 4, 2, 2, 4, 8, 2, 2, 5, 3, 8, 6, 3, 8, 8, 1, 7, 7, 7, 4, 1, 9, 1, 0, 4, 9
Offset: 1

Views

Author

Keywords

Examples

			2.6002950000539155877172082219411699164378377..
		

Crossrefs

Programs

  • Mathematica
    x=12;RealDigits[Log[x]/ProductLog[Log[x]],10,103][[1]]

A186503 Decimal expansion of the solution x to x^x = 13.

Original entry on oeis.org

2, 6, 4, 1, 0, 6, 1, 9, 1, 6, 4, 8, 4, 3, 9, 5, 8, 0, 8, 4, 1, 1, 8, 3, 9, 0, 0, 4, 0, 6, 5, 7, 9, 1, 2, 5, 4, 9, 3, 0, 8, 7, 3, 2, 2, 4, 6, 0, 5, 9, 4, 9, 6, 6, 7, 7, 1, 5, 2, 7, 2, 7, 2, 4, 0, 4, 8, 1, 8, 9, 5, 4, 6, 4, 0, 1, 5, 3, 1, 0, 4, 1, 9, 9, 5, 1, 3, 5, 4, 0, 2, 1, 3, 5, 2, 8, 2, 8, 7, 4, 6, 1
Offset: 1

Views

Author

Keywords

Examples

			2.6410619164843958084118390040657912549308732...
		

Crossrefs

Programs

  • Mathematica
    x=13;RealDigits[Log[x]/ProductLog[Log[x]],10,103][[1]]
    RealDigits[x/.FindRoot[x^x==13,{x,2.6},WorkingPrecision->120],10,120][[1]] (* Harvey P. Dale, Feb 07 2025 *)

Formula

Equals log(13)/LambertW(log(13)). - Alois P. Heinz, Jun 16 2021

A186504 Decimal expansion of the solution x to x^x = 14.

Original entry on oeis.org

2, 6, 7, 8, 5, 2, 3, 4, 8, 5, 8, 9, 1, 2, 9, 9, 5, 8, 1, 3, 0, 1, 1, 9, 9, 0, 0, 1, 0, 0, 9, 9, 5, 0, 6, 1, 5, 7, 7, 8, 6, 9, 9, 1, 7, 5, 5, 6, 1, 7, 3, 6, 5, 7, 7, 8, 6, 0, 8, 7, 2, 5, 0, 8, 8, 2, 3, 9, 9, 0, 0, 6, 9, 2, 8, 6, 8, 7, 8, 9, 9, 6, 2, 9, 4, 7, 4, 8, 7, 5, 1, 0, 0, 7, 1, 3, 8, 4, 0, 9, 1, 5
Offset: 1

Views

Author

Keywords

Examples

			2.6785234858912995813011990010099506157786992..
		

Crossrefs

Programs

  • Mathematica
    x=14;RealDigits[Log[x]/ProductLog[Log[x]],10,200][[1]]
    RealDigits[x/.FindRoot[x^x==14,{x,2},WorkingPrecision->120]][[1]] (* Harvey P. Dale, Aug 08 2023 *)

A344930 Decimal expansion of the real solution to x^x = 15.

Original entry on oeis.org

2, 7, 1, 3, 1, 6, 3, 6, 0, 4, 0, 0, 4, 2, 3, 9, 2, 0, 9, 5, 7, 6, 4, 0, 1, 2, 7, 6, 8, 2, 8, 5, 0, 9, 3, 7, 1, 8, 7, 8, 1, 8, 2, 4, 9, 9, 6, 7, 1, 4, 5, 1, 6, 0, 6, 7, 3, 1, 6, 3, 9, 5, 1, 8, 1, 4, 1, 7, 5, 7, 1, 4, 3, 9, 6, 2, 9, 0, 5, 2, 3, 9, 8, 1, 5, 1, 1, 5, 1
Offset: 1

Views

Author

Christoph B. Kassir, Jun 02 2021

Keywords

Comments

2.7131636040042392095764012768285093718781...

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[15]/ProductLog[Log[15]], 10, 100][[1]] (* Amiram Eldar, Jun 02 2021 *)
    RealDigits[x/.FindRoot[x^x==15,{x,2.7},WorkingPrecision->120],10,120][[1]] (* Harvey P. Dale, Apr 18 2022 *)

Formula

Equals log(15)/W(log(15)), where W(z) is the Lambert W Function.
Showing 1-6 of 6 results.