cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173177 Numbers k such that 2k+3 is a prime of the form 3*A034936(m) + 4.

Original entry on oeis.org

2, 5, 8, 14, 17, 20, 29, 32, 35, 38, 47, 50, 53, 62, 68, 74, 77, 80, 89, 95, 98, 104, 110, 113, 119, 134, 137, 140, 152, 155, 164, 167, 173, 182, 185, 188, 197, 203, 209, 215, 218, 227, 230, 242, 248, 260, 269, 272, 284, 287, 299
Offset: 1

Views

Author

Eric Desbiaux, Feb 11 2010

Keywords

Comments

With Bachet-Bézout theorem implicating Gauss Lemma and the Fundamental Theorem of Arithmetic,
for k > 1, k = 2*a + 3*b (a and b integers)
first type
A001477 = (2*A080425) + (3*A008611)
A000040 = (2*A039701) + (3*A157966)
A024893 Numbers k such that 3*k + 2 is prime
A034936 Numbers k such that 3*k + 4 is prime
OR
second type
A001477 = (2*A028242) + (3*A059841)
A000040 = (2*A067076) + (3*1)
A067076 Numbers k such that 2*k + 3 is prime
k a b OR a b
-- - - - -
0 0 0 0 0
1 - - - -
2 1 0 1 0
3 0 1 0 1
4 2 0 2 0
5 1 1 1 1
6 0 2 3 0
7 2 1 2 1
8 1 2 4 0
9 0 3 3 1
10 2 2 5 0
11 1 3 4 1
12 0 4 6 0
13 2 3 5 1
14 1 4 7 0
15 0 5 6 1
...
2* 2 + 3 OR 3* 1 + 4 = 7;
2* 5 + 3 OR 3* 3 + 4 = 13;
2* 8 + 3 OR 3* 5 + 4 = 19;
2*14 + 3 OR 3* 9 + 4 = 31;
2*17 + 3 OR 3*11 + 4 = 37;
2*20 + 3 OR 3*13 + 4 = 43;
2*29 + 3 OR 3*19 + 4 = 61;
2*32 + 3 OR 3*21 + 4 = 67;
2*35 + 3 OR 3*23 + 4 = 73.
A034936 Numbers k such that 3k+4 is prime.
A002476 Primes of the form 6k+1.
A024899 Nonnegative integers k such that 6k+1 is prime.
2, 5, 8, 14, 17, 20, ... = (3*(4*A024899 - A034936) - 5)/2.

Crossrefs

Programs

  • Mathematica
    Select[Range[300],PrimeQ[2#+3]&&Divisible[2#-1,3]&] (* Harvey P. Dale, Aug 25 2016 *)

Extensions

More terms from Harvey P. Dale, Aug 25 2016