cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173200 Solutions y of the Mordell equation y^2 = x^3 - 3a^2 - 1 for a = 0,1,2, ... (solutions x are given by A053755).

Original entry on oeis.org

0, 11, 70, 225, 524, 1015, 1746, 2765, 4120, 5859, 8030, 10681, 13860, 17615, 21994, 27045, 32816, 39355, 46710, 54929, 64060, 74151, 85250, 97405, 110664, 125075, 140686, 157545, 175700, 195199, 216090, 238421, 262240, 287595, 314534, 343105
Offset: 1

Views

Author

Michel Lagneau, Feb 12 2010

Keywords

Comments

For many values of k for the equation y^2 = x^3 + k, all the solutions are known. For example, we have solutions for k=-2: (x,y) = (3,-5) and (3,5). A complete resolution for all integers k is unknown. Theorem: Let k be < -1, free of square factors, with k == 2 or 3 (mod 4). Suppose that the number of classes h(Q(sqrt(k))) is not divisible by 3. Then the equation y^2 = x^3 + k admits integer solutions if and only if k = 1 - 3a^2 or 1 - 3a^2 where a is an integer. In this case, the solutions are x = a^2 - k, y = a(a^2 + 3k) or -a(a^2 + 3k) (the first reference gives the proof of this theorem). With k = -1 - 3a^2, we obtain the solutions x = 4a^2 + 1, y = a(8a^2 + 3) or -a(8a^2 + 3). For the case k = 1 - 3a^2, we obtain the solution x = 4a^2 - 1 given by the sequence A000466.

Examples

			With a=3, x =37 and y = 225, and then 225^2 = 37^2 - 28.
		

References

  • T. Apostol, Introduction to Analytic Number Theory, Springer, 1976.
  • D. Duverney, Théorie des nombres (2e edition), Dunod, 2007, p. 151.

Crossrefs

Cf. A000466.

Programs

  • Magma
    I:=[0, 11, 70, 225]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 02 2012
    
  • Maple
    for a from 0 to 150 do : z := evalf(a*(8*a^2 + 3)) : print (z) :od :
  • Mathematica
    CoefficientList[Series[x*(11+26*x+11*x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jul 02 2012 *)
    LinearRecurrence[{4,-6,4,-1},{0,11,70,225},40] (* Harvey P. Dale, Dec 21 2016 *)
  • Python
    for n in range(1,20): print(8*n**3 - 24*n**2 + 27*n - 11, end=', ') # Stefano Spezia, Dec 05 2018

Formula

y = a*(8*a^2 + 3).
From Colin Barker, Apr 26 2012: (Start)
a(n) = 8*n^3 - 24*n^2 + 27*n - 11.
G.f.: x^2*(11 + 26*x + 11*x^2)/(1 - x)^4. (End)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jul 02 2012
E.g.f.: 11 + exp(x)*(-11 + 11*x + 8*x^3). - Elmo R. Oliveira, Aug 15 2025