A173200 Solutions y of the Mordell equation y^2 = x^3 - 3a^2 - 1 for a = 0,1,2, ... (solutions x are given by A053755).
0, 11, 70, 225, 524, 1015, 1746, 2765, 4120, 5859, 8030, 10681, 13860, 17615, 21994, 27045, 32816, 39355, 46710, 54929, 64060, 74151, 85250, 97405, 110664, 125075, 140686, 157545, 175700, 195199, 216090, 238421, 262240, 287595, 314534, 343105
Offset: 1
Examples
With a=3, x =37 and y = 225, and then 225^2 = 37^2 - 28.
References
- T. Apostol, Introduction to Analytic Number Theory, Springer, 1976.
- D. Duverney, Théorie des nombres (2e edition), Dunod, 2007, p. 151.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- W. J. Ellison, F. Ellison, J. Pesek, C. E. Stall, and D. S. Stall, The diophantine equation y^2 + k = x^3, J. Number Theory, Vol. 4 (1972), pp. 107-117.
- John J. O'Connor and Edmund F. Robertson, Louis Joel Mordell.
- Helmut Richter, Solutions of Mordell's equation y^2 = x^3 + k. (solutions for 0
- Eric Weisstein's World of Mathematics, Mordell Curve.
- David J. Wright, Mordell's Equation.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Cf. A000466.
Programs
-
Magma
I:=[0, 11, 70, 225]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 02 2012
-
Maple
for a from 0 to 150 do : z := evalf(a*(8*a^2 + 3)) : print (z) :od :
-
Mathematica
CoefficientList[Series[x*(11+26*x+11*x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jul 02 2012 *) LinearRecurrence[{4,-6,4,-1},{0,11,70,225},40] (* Harvey P. Dale, Dec 21 2016 *)
-
Python
for n in range(1,20): print(8*n**3 - 24*n**2 + 27*n - 11, end=', ') # Stefano Spezia, Dec 05 2018
Formula
y = a*(8*a^2 + 3).
From Colin Barker, Apr 26 2012: (Start)
a(n) = 8*n^3 - 24*n^2 + 27*n - 11.
G.f.: x^2*(11 + 26*x + 11*x^2)/(1 - x)^4. (End)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jul 02 2012
E.g.f.: 11 + exp(x)*(-11 + 11*x + 8*x^3). - Elmo R. Oliveira, Aug 15 2025
Comments